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What this talk is about

This is an introductory talk aimed at the audience with a very basic
familiarity with �rst-order modal logic (FOML).

We'll be talking about completeness proofs wrt to Kripke semantics.

We'll discuss whether canonicity, as conceived in propositional modal
logic, is the right concept for FOMLs.

We'll also discuss the recently introduced concept of quasi-canonicity.
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Two views of FOML

It appears that there are broadly two views of FOML in the literature:

1 Semantically motivated: start with (some kind of) Kripke
semantics (= `propositional' Kripke frames with domains) for a
�rst-order modal language and de�ne logics as sets of formulas
valid on those frames.

2 Syntactically motivated: de�ne FOMLs as minimal logics (= sets
of formulas closed under certain inference rules) extending both
the classical �rst-order logic QCL and propositional modal
logics; e.g., de�ne �rst-order S4 to be the smallest logic
containing both QCL and propositional S4.
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Two views of FOML (contd.)

The �rst approach often leads to logics that are not conservative
extensions of QCL since some natural classes of Kripke frames with
domains do not validate classical validities with free variables; see,
e.g.,

• M. Fitting and R. Mendelsohn. First-Order Modal Logic. 2nd ed.
Springer, 2023.

Such logics are often called Kripkean.

We shall here call logics arising under the second approach classical

since they are (conservative) extensions of QCL. (Note that the term
'classical modal logic' has a di�erent meaning in the literature.) This
approach leads to the question of the adequate semantics for classical
FOMLs; see, e.g.,

• D. Gabbay, V. Shehtman and D. Skvortsov. Quanti�cation in

Non-classical Logics. Elsevier, 2009.

In particular, there is the question of which logics can be adequately
characterized within Kripke semantics.
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Two views of FOML (contd.)

This talk is devoted to classical FOMLs.

We'll be talking about completeness proofs with respect to Kripke
semantics (i.e., Kripke frames with domains) for these logics.

Kripke semantics is the simplest semantics for classical FOMLs (just
as it is for Kripkean logics).
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Syntax

First-order modal formulas (ML-formulas):

φ := P (x1, . . . , xn) | ⊥ | (φ→ φ) | ∀xφ | 2φ,

where P is an n-ary predicate letter. Nullary letters (i.e, n = 0) are
proposition letters; we write them without parentheses: P , Q, etc.

Standard abbreviations:

¬φ := φ→ ⊥;
φ ∨ φ := ¬φ→ ψ;
φ ∧ φ := ¬(φ→ ¬ψ);
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ);
∃xφ := ¬∀x¬φ;
3φ := ¬2¬φ.
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Hilbert systems

Minimal system QK:

• Axioms of QCL.
• A propositional modal axiom:

(K) 2(P → Q) → (2P → 2Q).

• Modus ponens (MP):
φ,φ→ ψ

ψ
.

• Predicate Substitution (Sub):

φ

φ′ if φ′ is a substitution instance of φ.

• Generalisation (Gen):
φ

∀xφ
.

• Necessitation (N):
φ

2φ
.
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Other systems

Other systems are obtained by adding axioms to QK.

• A common case: add to QK propositional formulas axiomatizing
a propositional modal logic Λ (call resultant system QΛ); e.g.,

QT := QK ⊕ 2P → P ;
QD := QK ⊕ 3⊤;
QKB := QK ⊕ P → 23P ;
QK4 := QK ⊕ 2P → 22P ;
QS4 := QT ⊕ QK4;
QK5 := QK ⊕ 32P → 2P ;
QS5 := QS4 ⊕ 32P → 2P ;
QGL := QK4 ⊕ 2(2P → P ) → 2P.

• Axioms containing both quanti�ers and modalities (here,
bf = ∀x2P (x) → 2∀xP (x), the Barcan formula):

QK⊕ bf ;
QK⊕2bf ;

. . .
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Logics

It is convenient to abstract away from Hilbert-style calculi and
introduce an abstract notion of a �rst-order modal logic:

De�nition

A (classical normal) �rst-order modal logic (henceforth, logic) is a set
of ML-formulas that

• includes QCL;

• includes the minimal normal propositional modal logic K;

• is closed under (MP), (Sub), (Gen), and (Nec).

The minimal logic is called QK.

De�nition

• If L is a logic and Γ a set of ML-formulas, then L⊕ Γ is the
smallest logic including L ∪ Γ.

• If Λ is a propositional modal logic, then QΛ := QK⊕ Λ
(the �rst-order counterpart of Λ).
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Kripke semantics

A Kripke frame is a pair F = ⟨W,R⟩, where W ̸= ∅ and R ⊆W ×W .

A Kripke frame with expanding domains is a tuple F = ⟨W,R,D⟩
where ⟨W,R⟩ is a Kripke frame and D is a system (Dw)w∈W of
domains, i.e., a family of non-empty sets satisfying the following
condition:

wRw′ =⇒ Dw ⊆ Dw′ . (ED)

A Kripke model is a tuple M = ⟨W,R,D, V ⟩, where V is a family
(Vw)w∈W of valuations, where each valuation Vw is a classical
valuation on Dw (in other words, for every w ∈W , the pair ⟨Dw, Vw⟩
is a classical model, i.e., Vw(P ) ⊆ Dn

w, for every n-ary P ).

A Kripke frame with (locally) constant domains is a Kripke frame
with expanding domains satisfying a condition that is stronger than
(ED):

wRw′ =⇒ Dw = Dw′ . (CD)

NB The latter semantics is equivalent to the semantics of Kripke
frames with a single domain shared by all worlds.
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Kripke frame with expanding domains
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Example

D0 = {(j)ohn, (m)ary},
V0(Loves) = {⟨j,m⟩, ⟨m, j⟩},
V0(Married) = ∅,
M0 = ⟨D0, V0⟩.

A year later. . .

D1 = {(j)ohn, (m)ary},
V1(Loves) = {⟨j,m⟩, ⟨m, j⟩},
V1(Married) = {⟨j,m⟩, ⟨m, j⟩},
M1 = ⟨D1, V1⟩.

Or maybe . . .

D2 = {(j)ohn, (m)ary, (s)teeve},
V2(Loves) = {⟨j,m⟩, ⟨m, s⟩, ⟨s,m⟩},
V2(Married) = {⟨s,m⟩, ⟨m, s⟩},
M2 = ⟨D2, V2⟩.
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Example
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W = {0, 1, 2}, R = {⟨0, 1⟩, ⟨0, 2⟩};

F = ⟨W,R⟩;

M = ⟨F, D, V ⟩.

D1 = {j,m}, D2 = {j,m}, D3 = {j,m, s},

V0(Loves) = {⟨j,m⟩, ⟨m, j⟩};
V0(Married) = ∅;
V1(Loves) = {⟨j,m⟩, ⟨m, j⟩};
V1(Married) = {⟨j,m⟩, ⟨m, j⟩};
V2(Loves) = {⟨j,m⟩, ⟨m, s⟩, ⟨s,m⟩};
V2(Married) = {⟨s,m⟩, ⟨m, s⟩}.

Evaluating formulas: M, 0 |= ∃x∃y (Loves(x, y) ∧ Loves(y, x));
M, 0 |= ∃x∃y3 (Loves(x, y) ∧ Loves(y, x));
M, 0 |= 2 ∃x∃y (Loves(x, y) ∧ Loves(y, x));
M, 0 ̸|= ∃x∃y2 (Loves(x, y) ∧ Loves(y, x)).
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Kripke semantics: satisfaction

Let F = ⟨W,R,D⟩ be a Kripke frame with expanding domains and
w ∈W . A Dw-sentence is an expression obtained from an
ML-formula by substituting (copies of) elements of Dw for free
variables of the formula.
The satisfaction relation ⊩ between models M, worlds w, and
Dw-sentences φ is de�ned by recursion:

M, w ⊩ P (a1, . . . , an) ⇋ ⟨a1, . . . , an⟩ ∈ Vw(P );
M, w ̸⊩ ⊥;
M, w ⊩ φ→ ψ ⇋ M, w ̸⊩ φ or M, w ⊩ ψ;
M, w ⊩ ∀xφ ⇋ M, w ⊩ φ(a), for every a ∈ Dw;
M, w ⊩ 2φ ⇋ M, w′ ⊩ φ, for every w′ ∈ R(w).

Validity: M |= φ ⇋ M, w ⊩ ∀̄φ, for every w ∈W ;
F |= φ ⇋ ⟨F , V ⟩ |= φ, for every V ;
F |= φ ⇋ ⟨F , D⟩ |= φ, for every D.

The set of formulas valid on all Kripke frames with expanding
domains coincides with QK.
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Completeness proofs

Completeness proofs with respect to Kripke semantics combine the
canonical model method for propositional modal logic with the
Henkin-style completeness proof for the classical �rst-order logic.

As in propositional logic, the worlds of a canonical model are
maximally consistent theories. What should the domains be?

One option is to use individual variables as elements of domains.

It is more general (out of cardinality considerations), and
conceptually perhaps clearer, to enrich the language with constants
and make them elements of domains. The additional constants are a
technical tool, they will not show up in the theorems we prove.
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Constants and theories

We add to ML a countable set C∗ of constants. (We work with the
case |C∗| = ℵ0 for simplicity; generalisation to the case |C∗| = κ, with
κ an arbitrary in�nite cardinal, is straightforward.)

We denote constants by a, b, c, . . ..

De�nition

A theory is a set of sentences, possibly with constants from C∗.

De�nition

The set of constants occurring in a theory Γ is denoted by CΓ; the set
of all sentences with constants from CΓ is called the language of Γ and
denoted by L(Γ).
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Derivability from theories

De�nition

Let L be a logic and Γ a theory. A formula φ is L-derivable from Γ
(notation: Γ ⊢L φ) if there exists a �nite sequence of formulas whose
every member is

• an element of L ∪ Γ;

• obtained from preceding members of the sequence by (MP).

If we were dealing Hilbert systems rather than abstract logics, we
would restrict application of (Sub) and (N) to formulas obtained
using only axioms, and no elements of Γ.

Theorem (Deduction theorem)

For every logic L, theory Γ, sentence φ, and formula ψ,

Γ, φ ⊢L ψ ⇐⇒ Γ ⊢L φ→ ψ.
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L-consistent theories

De�nition

A theory Γ is L-inconsistent if Γ ⊢L ⊥. Otherwise, Γ is L-consistent.

By Deduction theorem, a theory Γ is L-inconsistent if there exist
φ1, . . . , φn ∈ Γ such that ⊢L ¬(φ1 ∧ . . . ∧ φn); otherwise, Γ is
L-consistent.
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Completeness with respect to Kripke semantics

De�nition

A logic L is strongly Kripke complete if every L-consistent
ML-theory (no constants!) is satis�able in a Kripke model over a
Kripke frame with expanding domains validating L.

De�nition

A logic L is Kripke complete if there exists a class C of Kripke frames
with expanding domains such that, for every ML-formula φ (no
constants!),

φ ∈ L ⇐⇒ C |= φ.
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Worlds of canonical models

In canonical models for propositional models, worlds are simply
maximal consistent sets of formulas.

In FOMLs, they are theories with special properties. To de�ne them,
we need the following notions:

• L-complete theory;

• Henkin theory;

• L-place (= an L-complete Henkin theory with an additional
requirement).
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L-complete theories

De�nition

A theory Γ is L-complete if Γ is L-consistent, but every theory ∆ such
that Γ ⊂ ∆⊆ L(Γ) is L-inconsistent.

Lemma

For every L-consistent theory Γ, the following conditions are
equivalent:

• Γ is L-complete;

• for every φ ∈ L(Γ), either φ ∈ Γ or ¬φ ∈ Γ.

Lemma

If Γ is an L-complete theory and φ ∈ L(Γ), then Γ ⊢L φ ⇐⇒ φ ∈ Γ.

Dmitry Shkatov 21 / 49



L-complete theories (contd.)

Lemma

If Γ is an L-complete theory, then, for every φ,ψ ∈ L(Γ),
• φ ∧ ψ ∈ Γ ⇐⇒ φ ∈ Γ and ψ ∈ Γ;

• φ ∨ ψ ∈ Γ ⇐⇒ φ ∈ Γ or ψ ∈ Γ;

• φ→ ψ ∈ Γ ⇐⇒ φ /∈ Γ or ψ ∈ Γ.

In particular, L-complete theories are closed under (MP).

Lemma (Lindenbaum lemma)

Let Γ be an L-consistent theory. Then, there exists an L-complete
theory ∆ such that Γ ⊆ ∆⊆ L(Γ).
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Henkin theories

De�nition

A theory Γ is Henkin if, for every ∃xφ(x) ∈ L(Γ), there exists a ∈ CΓ
such that ∃xφ(x) → φ(a) ∈ Γ.

Lemma (Witness property)

If Γ is a Henkin theory and ∃xφ(x) ∈ L(Γ), then

∃xφ(x) ∈ Γ ⇐⇒ ∃∃a ∈ CΓ φ(a) ∈ Γ. (WP)

Lemma (Henkin lemma)

Every L-consistent theory can be extended to a Henkin theory (in a
language with countably many additional constants).
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L-places

De�nition

A set C ⊆ C∗ is small if C∗ − C is in�nite.

De�nition

An L-place is an L-complete Henkin theory Γ such that CΓ is small.

Using Lindenbaum lemma, Henkin lemma, and cardinality
considerations, we obtain the following:

Lemma (L-place lemma)

Every L-consistent theory with a small set of constants can be
extended to an L-place.
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Canonical models and frames

De�nition

The canonical model for L with respect to C∗ is the tuple
ML = ⟨WL, RL, DL, VL⟩ where
• WL is the set of all L-places;

• RL ⊆WL ×WL is the canonical accessibility relation:

ΓRL∆ ⇋ 2−Γ ⊆ ∆, where 2−Γ := {φ | 2φ ∈ Γ}.

• DL : WL → C∗ is the canonical system of domains:

DL(Γ) := CΓ;

• VL is the canonical valuation:

(VL)w(P
n) := {c ∈ Cn

Γ | Pn(c) ∈ Γ}.
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Canonical models and frames (contd.)

Lemma

For every Γ,∆ ∈WL,

ΓRL∆ =⇒ CΓ ⊆ C∆.

Proof. Let a ∈ CΓ. Then, 2(P (a) → P (a)) ∈ L(Γ).
Since Γ is L-complete and Γ ⊢L 2(P (a) → P (a)), it follows that
2(P (a) → P (a)) ∈ Γ.

Since ΓRL∆, the de�nition of RL implies that (P (a) → P (a)) ∈ ∆,
and so a ∈ C∆.

De�nition

The tuple FL := ⟨WL, RL, DL⟩ is the canonical Kripke frame with
expanding domains.
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Existence lemma

Lemma (Existence lemma)

Let FL = ⟨WL, RL, DL⟩ be the canonical Kripke frame with
expanding domains and let Γ ∈WL, with 3φ ∈ Γ. Then, there exists
an L-complete theory ∆ such that

• L(Γ) = L(∆);

• ΓRL∆;

• φ ∈ ∆.
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Truth lemma and canonical model theorem

Lemma (Truth lemma)

Let ML = ⟨WL, RL, DL, VL⟩ be a canonical model and Γ ∈WL. Then,
for every φ ∈ L(Γ),

ML,Γ ⊩ φ ⇐⇒ φ ∈ Γ.

Proof. By induction on φ.
• Case φ = P (a1, . . . , an): by de�nition of ML.
• Boolean cases: by properties of L-complete sets.
• Case φ = ∃xψ: by (WP).
• Case φ = 3ψ: by Existence lemma.

Theorem (Canonical model theorem)

Let ML be a canonical model for L. Then, for every φ ∈ ML,

φ ∈ L ⇐⇒ ML |= φ.
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Canonical logics

De�nition

A logic L is canonical if it is valid on its canonical Kripke frame with
expanding domains, i.e., if FL |= L.

Theorem

Every canonical logic is strongly Kripke complete.

Proof.

Let L be canonical and let Γ0 be an L-consistent theory.

Then, Γ0 ⊆ Γ, for some L-place Γ. By Truth lemma, ML,Γ ⊩ Γ0.
Since L is canonical, FL |= L.

Theorem

The logic QK is canonical and, therefore, strongly Kripke complete.

Dmitry Shkatov 29 / 49



Canonical formulas

De�nition

A formula φ is canonical if the logic QK⊕ φ is canonical.

Proposition

If L is a canonical logic and φ is a canonical formula, then the logic
L⊕ φ is canonical.
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Examples of canonical formulas

De�nition

A formula is constant if it is built from ⊥ using → and 2.

De�nition

A formula is one-way pseudo-transitive if it has the form 2φ→ 2nφ,
for some n ⩾ 0.

Examples:

(D) 3⊤ constant;
(T ) 2P → P one-way pseudo-transitive;
(4) 2P → 22P one-way pseudo-transitive.
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Examples of canonical formulas (contd.)

Theorem

Every constant formula is canonical.

Theorem

Every one-way pseudo-transitive formula is canonical.

Corollary

If L = QK⊕Γ, where Γ is a set of closed or one-way pseudo-transitive
formulas, then L is canonical and, hence, strongly Kripke complete.

Corollary

Logics QD, QT, QK4, and QS4 are strongly Kripke complete.

These logics are complete wrt to the expected classes of Kripke
frames.
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Failure of transfer of canonicity

Canonicity of a propositional logic Λ does not guarantee canonicity
of QΛ.

Example 1: KB is canonical, but QKB is not, since the formula
B = P → 23P is canonical propositionally, but not in FOML:

Propositional reasoning : Suppose that ΓRL∆, but not ∆RLΓ. Then,
there exists a formula φ such that 2φ ∈ ∆, but φ /∈ Γ. Then, ¬φ ∈ Γ.
Since Γ is an L-complete set, ¬φ→ 23¬φ ∈ Γ. Hence, 23¬φ ∈ Γ,
and so 3¬φ ∈ ∆, in contradiction with 2φ ∈ ∆.

This reasoning fails in the FO case since φ ∈ L(∆), but not
necessarily φ ∈ L(Γ) (recall that CΓ ⊆ C∆, but not necessarily vice
versa): problematic steps are in blue.

We can turn this observation into a proof:
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Failure of transfer of canonicity (contd.)

Lemma

For every L and every Γ,∆ ∈WL, if ΓRL∆, then CΓ ⊆ C∆.

Let L = QK+B (= QKB). Then, 3⊤ is L-consistent (it is satis�ed
on a Kripke frame consisting of a single re�exive world). Hence, there
exists an L-place Γ such that 3⊤ ∈ Γ.

By Existence lemma, 2−Γ ∪ {⊤} is L-consistent. Let a ∈ C∗ − CΓ
(such an a exists since Γ is an L-place, and so CΓ is small) and let P
be a monadic predicate letter. Since 2−Γ ∪ {⊤} is L-consistent, so is
2−Γ ∪ {P (a) → P (a)}.

Hence, there exists an L-place ∆ such that
2−Γ ∪ {P (a) → P (a)} ⊆ ∆. Since 2−Γ ⊆ ∆, it follows that ΓRL∆.

On the other hand, C∆ ̸⊆ CΓ; hence, by Lemma, ∆RLΓ does not hold.
Thus, RL is not symmetric. Hence FL ̸|= QKB.
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Failure of transfer of canonicity (contd.)

Example 2: KAltn is canonical, but QAltn is not, since the formula

altn := ¬
n∧

i=0

3(Pi ∧
∧
j ̸=i

¬Pj)

is canonical propositionally, but not in FOML.
Propositional reasoning : If i ̸= j, there exists φij such that φij ∈ ∆i

and φij /∈ ∆j . Put ψi :=
∧
j ̸=i

φij . Then, ψi ∈ ∆j i� i = j. Thus,

ψi ∧
∧
j ̸=i

¬ψj ∈ ∆i. Hence, 3(ψi ∧
∧
j ̸=i

¬ψj) ∈ Γ, for every i ∈ {1, . . . , n}.

By altn, ¬
n∧

i=0

3(ψi ∧
∧
j ̸=i

¬ψj) ∈ Γ. This gives us a contradiction.

· · ·
∆n

Γ

∆1∆0
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Failure of transfer of canonicity (contd.)

This fails in FOML since ψi /∈ L(Γ). This observation can be turned
into a proof:

· · ·
∆n ⊇ ∆ ∪ {A(an)}

3⊤ ∈ Γ

∆1 ⊇ ∆ ∪ {A(a1)}∆ ⊇ 2−Γ

Let L = QAltn. Choose a1, . . . , an ∈ C∗ − C∆.
Put ψ(ai) := P (ai) → P (ai). Extend each set ∆ ∪ {ψ(ai)} to an
L-place ∆i so that C∆i

⊆ C∗ − {a1, . . . , ai−1, ai+1, . . . , an}.
Then, ∆i ̸= ∆j whenever i ̸= j. Hence, FL ̸|= altn, and so FL ̸|= L.
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Quasi-canonicity

It looks like, in general, FO canonical models contain too much �junk�.

Recently, Valentin Shehtman introduced the notion of a
quasi-canonical model and a quasi-canonical logic. Quasi-canonical
models are obtained from canonical models by selection that
resembles selective �ltration in propositional modal logic.
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Selective weak submodels

De�nition

A Kripke model M′ = (W ′, R′, D′, V ′) is a weak submodel of a Kripke
model M = (W,R,D, V ) if W ′ ⊆W , R′ ⊆ R, and, for every w ∈W ′,
both Dw = D′

w and V ′
w = Vw. If, additionally,

M, w ⊩ 3φ =⇒ ∃v ∈ R′(w) M, v ⊩ φ,

for every w ∈W ′ and every Dw-sentence φ, then M′ is a selective
weak submodel of M (notation: M′ ⋐ M).

Note that weak submodels di�er from submodels: in weak submodels
it is possible that R′ ⊂ R ↾W ′, while in submodels R′ = R ↾W ′.

Lemma

Let M′ ⋐ M and let w be a world of M′. Then, for every w ∈W ′ and

every Dw-sentence φ,

M, w ⊩ φ ⇐⇒ M′, w ⊩ φ.
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Quasi-canonical logics

De�nition

A quasi-canonical model for a logic L is a selective weak submodel of
the canonical model for L.

De�nition

A logic L is quasi-canonical if, for every L-place Γ, there exists a
quasi-canonical model over a Kripke frame with expanding domains
(W,R,D) such that Γ ∈W and (W,R,D) |= L.

Theorem

Every quasi-canonical logic is strongly Kripke complete.

Proof. Immediate from de�nitions: the existence of a weak selective
submodel over the right Kripke frame with domains proves strong
Kripke completeness.
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Example: QAltn

Theorem

Let L = QAltn, for some n ⩾ 1. Then, L is quasi-canonical and,
hence, strongly Kripke complete.

Proof. Let ML = (WL, RL, DL, VL) be a canonical model for L and
let Γ0 ∈ WL. We obtain a model M ⋐ ML over a Kripke frame with
expanding domains validating L and containing Γ0. The key
observation is the following (the proof is similar to the propositional
reasoning for Altn):

Lemma

If Γ ∈WL and

XΓ = {∆ | ∆ is an L-complete theory & L(∆) = L(Γ) & □−Γ ⊆ ∆},

then |XΓ| ⩽ n.

This is enough to apply Existence lemma to XΓ rather than to WL.
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Example: QAltn

Hence, we can build the selective weak submodel of ML containing Γ0

by recursion, starting with Γ0 and selecting its successors based on
Lemma. The lemma makes sure that all the diamonds are realized,
and hence `Truth Lemma is still e�ective'.

Essentially the same argument works for QTAltn.

This argument can be generalised to logics of �nite uniform trees and
to a few other situations.
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Example: Logics with the Barcan formula

The logic QKTB proves the Barcan formula
bf = ∀x2P (x) → 2∀xP (x):

Lemma

If L ⊢ P → 23P , then L ⊢ bf .

The formula bf is valid precisely on Kripke frames with locally
constant domains.

Canonical models for these logics do not satisfy the local constancy
condition (again, they contain too much `junk'). We can, however,
select a weak selective submodel of their canonical model based on a
Kripke frame with locally constant domains (in fact, with a constant
domain).

We can only prove (weak) completeness this way. The key observation
is the following:
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Example: Logics with the Barcan formula (contd.)

Lemma (Existence lemma for constant domains)

Let L be logic containing bf . If Γ ∈ WL and 3φ ∈ Γ, then there exists
∆ ∈ WL such that

• L(Γ) = L(∆);

• ΓRL∆;

• φ ∈ ∆.

NB Notice the di�erence with Existence Lemma (for expanding
domains): here ∆ is Henkin; the proof goes through due to bf .
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(Weak) completeness for QKTB

By Lemma above, L ⊢ p→ 23p implies L ⊢ bf , hence we can do the
following:

Lemma

Let L be a logic such that L ⊢ p→ 23p and let M = ⟨W,R,D, V ⟩ be
a quasi-canonical model for L built using Existence lemma for
constant domains. Then, R is symmetric.

Proof. Essentially, propositional reasoning : Suppose ΓR∆. For
contradiction, assume that 2φ ∈ ∆, but φ ̸∈ Γ. Since Γ,∆ ∈W , it
follows that L(Γ) = L(∆). Since φ ∈ L(∆) and L(Γ) = L(∆), it
follows that φ ∈ L(Γ). Hence, ¬φ ∈ Γ. By (Sub), L ⊢ ¬φ→ 23¬φ,
and so ¬φ→ 23¬φ ∈ Γ. But then 3¬φ ∈ ∆, i.e. ¬2φ ∈ ∆, contrary
to L-consistency of ∆.

Corollary

QKB is Kripke complete.
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(Weak) completeness for logics with Barcan

Theorem (Follows from Tanaka and Ono 2001)

Let Λ be a universal Kripke complete propositional logic (= complete
wrt a class of frames de�nable by universal classical �rst-order
sentences) such that QΛ ⊢ bf . Then, QΛ is Kripke complete.

Corollary

QS5 is Kripke complete.
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General results on quasi-canonicity

There are a handful of general results on quasi-canonicity:

Theorem

If a logic L is quasi-canonical and Γ is a set of constant formulas, then
L⊕ Γ is quasi-canonical.

Theorem

If a logic L is quasi-canonical and Γ is a pure equality theory, then
L⊕ Γ is quasi-canonical.

Theorem

If φ is a single-variable propositional formula of modal depth 1, then
QK⊕ φ is quasi-canonical.
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Thank you!
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