### Computational complexity of universal theories of residuated structures

#### Dmitry Shkatov University of the Witwatersrand, Johannesburg

joint work with

#### Clint J. Van Alten University of the Witwatersrand, Johannesburg

UPenn Logic and Computation Seminar 25 April 2023

### Basic setting from the logical point of view

• We are thinking of propositional logics specified using Gentzen-style deductive systems whose primary entities are sequents of the form

$$\Gamma \vdash \Delta$$
,

where  $\Gamma$  and  $\Delta$  are structure composed of formulas using a binary non-associative and not necessarily commutative operator, usually denoted by comma (we also need parentheses for the grouping of formulas).

• We naturally want

$$\Gamma \vdash \Gamma$$
 and  $\Gamma \vdash \Delta \& \Delta \vdash \Theta \Rightarrow \Gamma \vdash \Theta$ ,

i.e., we want  $\vdash$  to be reflexive and transitive (we are not necessarily committed to other properties of  $\vdash$  such as monotonicity and compactness).

(1日) (1日) (1日)

### Basic setting from the logical point of view

- We have binary connectives that internalize in the language structural properties of our sequents:
  - connective  $\circ$  ('fusion') represents the comma: if  $\gamma_1$  and  $\gamma_2$  correspond, respectively, to  $\Gamma_1$  and  $\Gamma_2$ , then  $[\gamma_1 \circ \gamma_2] \vdash \Delta$  corresponds to  $[\Gamma_1, \Gamma_2] \vdash \Delta$ ;
  - two connectives \ and / internalizing statements about deduction (they differ in whether a designated premise comes from the left or from the right):

$$\begin{array}{ll} \gamma_1 \circ \gamma_2 \vdash \delta & \Longleftrightarrow & \gamma_2 \vdash \gamma_1 \backslash \delta; \\ \gamma_1 \circ \gamma_2 \vdash \delta & \Longleftrightarrow & \gamma_1 \vdash \delta / \gamma_2. \end{array}$$

- We might want to have other connectives, say  $\land$  and  $\lor$ .
- The basic logic we get is Non-associative Lambek Calculus.
- If we add ∧ and ∨ with their usual Gentzen-style rules, we get Full Non-associative Lambek Calculus.
- If, additionally, ∧ and ∨ distribute over each other, we get Full Distributive Non-associative Lambek Calculus.

イロト イロト イヨト ・ヨ

### Residuated ordered groupoids (rogs)

Fix a signature  $\sigma$  containing a binary relation symbol  $\leq$  and binary operational symbols  $\circ$ ,  $\backslash$ , and /.

#### Definition

A residuated ordered groupoid (for short, rog) is a  $\sigma$ -structure  $\mathbf{A} = \langle A, \circ, \backslash, /, \leqslant \rangle$ , where  $\langle A, \leqslant \rangle$  is a poset and  $\circ, \backslash$  and / are binary operations on A such that, for all  $a, b, c \in A$ ,

$$a \circ b \leqslant c \Longleftrightarrow b \leqslant a \backslash c \iff a \leqslant c/b.$$
<sup>(1)</sup>

The class of all rogs is denoted by  $\mathcal{ROG}$ .

(1日) (1日) (1日)

### Theories of rogs

The atomic theory of  $\mathcal{ROG}$  is the set of the atomic formulas (i.e., expressions of the form  $s \leq t$ ) valid in  $\mathcal{ROG}$ . This theory is in P (E. Aarts and K. Trautwein [1]).

The Horn theory of  $\mathcal{ROG}$  is the set of formulas of the form  $\alpha_1 \dot{\wedge} \dots \dot{\wedge} \alpha_n \Rightarrow \alpha$ , where  $\alpha_1, \dots, \alpha_n$  and  $\alpha$  are all atomic, valid in  $\mathcal{ROG}$ . This theory is in P (W. Buszkowski [2]).

The universal theory of  $\mathcal{ROG}$  is the set of formulas  $\forall x_1 \dots \forall x_n \varphi(x_1, \dots, x_n)$ , where  $\varphi$  is a Boolean combination of atomic formulas, valid in  $\mathcal{ROG}$ . This theory is coNP-complete (this talk & *JoLLI* paper).

(1日) (1日) (1日)

### Partial structures

#### Definition

A partial  $\sigma$ -structure is a tuple  $\mathbf{B} = \langle B, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \rangle^{\mathbf{B}}, \langle^{\mathbf{B}}\rangle$ , where  $B \neq \emptyset, \leq^{\mathbf{B}} \subseteq B \times B$ , and  $\circ^{\mathbf{B}}, \backslash^{\mathbf{B}}$ , and  $\rangle^{\mathbf{B}}$  are partial binary operations on B (i.e., partial functions  $B \times B \mapsto B$ ).

The domains of  $\circ^{\mathbf{B}}$ ,  $\backslash^{\mathbf{B}}$  and  $/^{\mathbf{B}}$  are denoted by, respectively, dom  $\circ^{\mathbf{B}}$ , dom  $\backslash^{\mathbf{B}}$ , and dom  $/^{\mathbf{B}}$ .

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

### Partial rogs

#### Definition

A *partial rog* is a partial  $\sigma$ -structure  $\mathbf{B} = \langle B, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \langle^{\mathbf{B}}, \leq^{\mathbf{B}} \rangle$  that is a partial substructure of a rog, i.e., such that there exists a rog  $\mathbf{A} = \langle A, \circ^{\mathbf{A}}, \backslash^{\mathbf{A}}, \leq^{\mathbf{A}} \rangle$  with  $B \subseteq A, \leq^{\mathbf{B}} = \leq^{\mathbf{A}} \upharpoonright_{B}$  and  $a \star^{\mathbf{B}} b = a \star^{\mathbf{A}} b$ for every  $\star \in \{\circ, \backslash, /\}$  and every  $\langle a, b \rangle \in \operatorname{dom} \star^{\mathbf{B}}$ .

**Caution**: if **B** is a partial rog that is a partial substructure of a rog **A**, then  $\star^{\mathbf{B}}$  ( $\star \in \{\circ, \backslash, /\}$ ) is not necessarily a restriction of  $\star^{\mathbf{A}}$  to *B*. It is possible that  $a, b \in B$  and  $a \star^{\mathbf{A}} b \in B$ , but  $\langle a, b \rangle \notin \operatorname{dom} \star^{\mathbf{B}}$ ; i.e., we do not require that dom  $\star^{\mathbf{B}} = \operatorname{dom} \star^{\mathbf{A}} \upharpoonright B$ .

**E.g.**, we might have  $\langle a_1, a_2 \rangle \in \operatorname{dom} \circ^{\mathbf{B}}$ ,  $\langle b_1, b_2 \rangle \in \operatorname{dom} \setminus^{\mathbf{B}}$ , and  $a_2 \circ^{\mathbf{A}} b_1 = a_1 \circ^{\mathbf{A}} a_2 (= a_1 \circ^{\mathbf{B}} a_2)$ , but  $\langle a_2, b_1 \rangle \notin \operatorname{dom} \circ^{\mathbf{B}}$ .

### Embedding a partial structure into a structure

#### Definition

Let  $\mathbf{B} = \langle B, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, /^{\mathbf{B}}, \leqslant^{\mathbf{B}} \rangle$  be a partial  $\sigma$ -structure and  $\mathbf{A} = \langle A, \circ^{\mathbf{A}}, \backslash^{\mathbf{A}}, /^{\mathbf{A}}, \leqslant^{\mathbf{A}} \rangle$  a  $\sigma$ -structure. An *embedding* of  $\mathbf{B}$  into  $\mathbf{A}$  is a map  $\alpha : B \to A$  such that

- $a \leq {}^{\mathbf{B}} b \iff \alpha(a) \leq {}^{\mathbf{A}} \alpha(b)$ , for every  $a, b \in B$ ;
- $\alpha(a \star^{\mathbf{B}} b) = \alpha(a) \star^{\mathbf{A}} \alpha(b)$ , for every  $\star \in \{\circ, \backslash, /\}$  and every  $\langle a, b \rangle \in \operatorname{dom} \star^{\mathbf{B}}$ .

#### Fact

If a partial  $\sigma$ -structure **B** is embeddable into a rog **A**, then **B** is isomorphic to a partial substructure of **A**; hence, **B** is a partial rog.

### Characterization of partial rogs

#### Theorem

A partial  $\sigma$ -structure  $\mathbf{B} = \langle B, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \langle^{\mathbf{B}}, \langle^{\mathbf{B}} \rangle$  is a partial rog iff the following conditions are satisfied: (i)  $\langle B, \leq^{\mathbf{B}} \rangle$  is a poset: (ii)  $\forall \langle a, b \rangle, \langle c, d \rangle \in \operatorname{dom} \circ^{\mathbf{B}} [a \leq^{\mathbf{B}} c \& b \leq^{\mathbf{B}} d \Longrightarrow a \circ^{\mathbf{B}} b \leq^{\mathbf{B}} c \circ^{\mathbf{B}} d]:$ (iii)  $\forall \langle a, b \rangle \in \operatorname{dom} \circ^{\mathbf{B}} \forall \langle c, d \rangle \in \operatorname{dom} \setminus^{\mathbf{B}}$  $[a \leq^{\mathbf{B}} c \& b \leq^{\mathbf{B}} c \rangle^{\mathbf{B}} d \Rightarrow a \circ^{\mathbf{B}} b \leq^{\mathbf{B}} d]:$ (iv)  $\forall \langle a, b \rangle \in \operatorname{dom} \circ^{\mathbf{B}} \forall \langle c, d \rangle \in \operatorname{dom} /^{\mathbf{B}}$  $[a \leq^{\mathbf{B}} c/^{\mathbf{B}} d \& b \leq^{\mathbf{B}} d \Rightarrow a \circ^{\mathbf{B}} b \leq^{\mathbf{B}} c]:$ (v)  $\forall \langle a, b \rangle \in \operatorname{dom} \backslash^{\mathbf{B}} \forall \langle c, d \rangle \in \operatorname{dom} \circ^{\mathbf{B}}$  $[a \leq^{\mathbf{B}} c \& c \circ^{\mathbf{B}} d \leq^{\mathbf{B}} b \Rightarrow d \leq^{\mathbf{B}} a \setminus^{\mathbf{B}} b]:$ (vi)  $\forall \langle a, b \rangle \in \operatorname{dom} / {}^{\mathbf{B}} \forall \langle c, d \rangle \in \operatorname{dom} \circ {}^{\mathbf{B}}$  $[b \leq^{\mathbf{B}} d \& c \circ^{\mathbf{B}} d \leq^{\mathbf{B}} a \Rightarrow c \leq^{\mathbf{B}} a/^{\mathbf{B}}b]:$ 

### Characterization of partial rogs (control)

#### Theorem

A partial  $\sigma$ -structure  $\mathbf{B} = \langle B, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \langle^{\mathbf{B}}, \leqslant^{\mathbf{B}} \rangle$  is a partial rog iff  $\langle B, \leqslant^{\mathbf{B}} \rangle$  is a poset and the following conditions are satisfied:

$$\begin{aligned} \text{(vii)} \quad \forall \langle a, b \rangle, \langle c, d \rangle \in \text{dom} \setminus^{\mathbf{B}} [a \leqslant^{\mathbf{B}} c \& d \leqslant^{\mathbf{B}} b \Rightarrow c \setminus^{\mathbf{B}} d \leqslant^{\mathbf{B}} a \setminus^{\mathbf{B}} b]; \\ \text{(viii)} \quad \forall \langle a, b \rangle \in \text{dom} \setminus^{\mathbf{B}} \forall \langle c, d \rangle \in \text{dom} /^{\mathbf{B}} \\ \quad & [a \leqslant^{\mathbf{B}} c /^{\mathbf{B}} d \& c \leqslant^{\mathbf{B}} b \Rightarrow d \leqslant^{\mathbf{B}} a \setminus^{\mathbf{B}} b]; \\ \text{(ix)} \quad \forall \langle a, b \rangle \in \text{dom} /^{\mathbf{B}} \forall \langle c, d \rangle \in \text{dom} \setminus^{\mathbf{B}} \\ \quad & [d \leqslant^{\mathbf{B}} a \& b \leqslant^{\mathbf{B}} c \setminus^{\mathbf{B}} d \Rightarrow c \leqslant^{\mathbf{B}} a /^{\mathbf{B}} b]; \\ \text{(x)} \quad \forall \langle a, b \rangle, \langle c, d \rangle \in \text{dom} /^{\mathbf{B}} [c \leqslant^{\mathbf{B}} a \& b \leqslant^{\mathbf{B}} d \Rightarrow c /^{\mathbf{B}} d \leqslant^{\mathbf{B}} a /^{\mathbf{B}} b]. \end{aligned}$$

 $(\Rightarrow)$  The analogues of properties (i) through (x) hold in every rog.

 $(\Leftarrow)$  We construct a relational frame  $\mathfrak{F}$  from **B** and then a rog  $\mathbf{A}_{\mathfrak{F}}$  out of  $\mathfrak{F}$ , and embed **B** into  $\mathbf{A}_{\mathfrak{F}}$ .

### **Relational** frames

Relational frames are widely used in the study of non-classical logics, due to the success of the Kripke frame semantis for modal and superintuitionistic logics. The relational frame theory for rogs and related structures is due to Dunn [3].

#### Definition

A *frame* is a relational structure  $\mathfrak{F} = \langle P, \leq, R \rangle$ , where  $\langle P, \leq \rangle$  is a poset and R is a ternary relation on P that is monotone in the last coordinate and antitone in the first two coordinates: for every  $f, f', g, g', h, h' \in P$ ,

$$R(f,g,h) \& f' \leqslant f \& g' \leqslant g \& h \leqslant h' \Longrightarrow R(f',g',h').$$
(2)

・ 何 ト ・ ヨ ト ・ ヨ ト

### From frames to algebras

Let  $\mathfrak{F} = \langle P, \leqslant, R \rangle$  be a frame and U(P) be the set of upsets of  $\mathfrak{F}$  (i.e. if  $X \in U(P)$ ,  $f \in X$  and  $f \leqslant g$ , then  $g \in X$ ). Define, for all  $X, Y \in U(P)$ ,

$$X \circ Y := \{ h \in P \mid \exists f, g \in P \, [f \in X \& g \in Y \& R(f, g, h)] \}; \qquad (3)$$

$$X \setminus Y := \{ g \in P \mid \forall f, h \in P [ f \in X \& R(f, g, h) \Rightarrow h \in Y ] \}; \qquad (4)$$

$$Y/X := \{ f \in P \mid \forall g, h \in P [g \in X \& R(f, g, h) \Rightarrow h \in Y] \}.$$

$$(5)$$

Since  $\mathfrak{F}$  satisfies (2), so defined  $\circ$ ,  $\setminus$  and / are operations on U(P). The definitions (3)–(5) ensure that (1) is satisfied with respect to  $\subseteq$  on U(P). Hence,  $\mathbf{A}_{\mathfrak{F}} = \langle U(P), \circ, \backslash, /, \subseteq \rangle$  is a rog.

### From algebras to frames

Let  $\mathbf{A} = \langle A, \circ, \backslash, /, \leqslant \rangle$  be a rog. Define a ternary relation R on U(A) by

$$R(f,g,h) \iff \forall a,b \in A \ [a \in f \& b \in g \Longrightarrow a \circ b \in h]. \tag{6}$$

Then R and  $\subseteq$  satisfy condition (2), hence  $\mathfrak{F}_{\mathbf{A}} = \langle U(A), \subseteq, R \rangle$  is a frame.

#### Fact

Let  $\mathbf{A} = \langle A, \circ, \backslash, /, \leqslant \rangle$  be a rog. The map  $\mu \colon A \to U(U(A))$  defined by  $\mu(a) = \{f \in U(A) \mid a \in f\}$  is an embedding of  $\mathbf{A}$  into  $\mathbf{A}_{\mathfrak{F}\mathbf{A}}$ .

### Proof idea for part ( $\Leftarrow$ ) of the Theorem

Suppose  $\mathbf{B} = \langle B, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \langle^{\mathbf{B}}, \leq^{\mathbf{B}} \rangle$  is a partial  $\sigma$ -structure satisfying (i) through (x). We obtain a rog into which  $\mathbf{B}$  is embeddable. Define a ternary relation  $R^{\mathbf{B}}$  on U(B) by:

$$\begin{split} R^{\mathbf{B}}(f,g,h) &\iff \forall \langle a,b \rangle \in \mathrm{dom} \circ^{\mathbf{B}} [a \in f \& b \in g \Longrightarrow a \circ^{\mathbf{B}} b \in h] \\ &\& (\forall \langle a,b \rangle \in \mathrm{dom} \setminus^{\mathbf{B}} [a \in f \& a \setminus^{\mathbf{B}} b \in g \Longrightarrow b \in h] \\ &\& \forall \langle a,b \rangle \in \mathrm{dom} /^{\mathbf{B}} [a / {}^{\mathbf{B}} b \in f \& b \in g \Longrightarrow a \in h]. \end{split}$$

Then,  $\mathfrak{F} = \langle U(B), \subseteq, R^{\mathbf{B}} \rangle$  is a frame.

Let  $\mathbf{A}_{\mathfrak{F}} = \langle U(U(B)), \circ, \backslash, /, \subseteq \rangle$  be the rog associated with  $\mathfrak{F}$  and let  $\mu \colon B \to U(U(B))$  be the map defined by  $\mu(a) = \{f \in U(B) \mid a \in f\}$ . Then,  $\mu$  is an embedding of  $\mathbf{B}$  into  $\mathbf{A}_{\mathfrak{F}}$ .

- ロト - 4 目 ト - 4 日 ト - 1 日

### Evaluation of formulas in rogs

Universal  $\sigma$ -sentences are formulas of the form  $\forall x_1 \dots \forall x_n \varphi$ , where  $\varphi$  is a quantifier-free (first-order)  $\sigma$ -formula, i.e., a formula defined by the BNF expression

$$\varphi := t \leqslant t \mid \dot{\neg}\varphi \mid (\varphi \dot{\land} \varphi) \mid (\varphi \dot{\lor} \varphi),$$

with t ranging over  $\sigma$ -terms, and containing no variables other than  $x_1, \ldots, x_n$ .

Formulas are evaluated as in standard model theory. The *universal* theory of  $\mathcal{ROG}$  is the set of all universal  $\sigma$ -sentences valid on  $\mathcal{ROG}$ .

By the semantics of quantifiers, a universal sentence  $\forall x_1 \dots \forall x_n \varphi$  is valid on  $\mathcal{ROG}$  iff  $\neg \varphi$  is not satisfiable in  $\mathcal{ROG}$ . Thus, satisfiability of quantifier-free  $\sigma$ -formulas in  $\mathcal{ROG}$  and membership in the universal theory of  $\mathcal{ROG}$  are complementary computational problems.

・ロト ・日ト ・日ト ・日ト

Basic setting rogs brdgs References

### Evaluation of quantifier-free formulas in partial rogs

We shall also need the notion of satisfaction of a quantifier-free  $\sigma$ -formula in a partial rog under a partial assignment (partial function from variables into the universe of a partial rog). Let **B** be a partial rog and v a partial assignment in **B**.

Define the relation  $\mathbf{B} \downarrow v(t)$  ("the value of t in **B** is defined under v"):

$$\begin{array}{lll} \mathbf{B} \downarrow v(x_i) & \Longleftrightarrow & x_i \in \operatorname{dom} v; \\ \mathbf{B} \downarrow v(t_1 \star t_2) & \Longleftrightarrow & \mathbf{B} \downarrow v(t_1), \, \mathbf{B} \downarrow v(t_2) \text{ and } \langle v(t_1), v(t_2) \rangle \in \operatorname{dom} \star^{\mathbf{B}}, \\ & & \text{where } \star \in \{\circ, \backslash, /\}. \end{array}$$

Intuitively,  $\mathbf{B} \models^{v} \varphi$  and  $\mathbf{B} \not\models^{v} \varphi$  mean that the relation  $\mathbf{B} \downarrow v(t)$  holds for enough terms of  $\varphi$  for the value of  $\varphi$  in  $\mathbf{B}$  under v to come out as, respectively, true and false.

・ コ ト ・ 雪 ト ・ 三 ト ・ コ ト

### Evaluation of quantifier-free formulas in partial rogs

Formally, we define the relations  $\mathbf{B} \models^{v} \varphi$  (" $\varphi$  is satisfied in  $\mathbf{B}$ under v"),  $\mathbf{B} \not\models^{v} \varphi$  (" $\varphi$  is not satisfied in **B** under v") and  $\mathbf{B} \approx^{v} \varphi$ ("the value of  $\varphi$  in **B** under v is undefined"):

| $\mathbf{B}\models^v t_1\leqslant t_2$                      | $\iff$ $\mathbf{B} \downarrow v(t_1), \mathbf{B} \downarrow v(t_2) \text{ and } v(t_1)$    | $\leq^{\mathbf{B}} v(t_2);$          |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------|
| $\mathbf{B} \not\models^v t_1 \leqslant t_2$                | $\iff$ $\mathbf{B} \downarrow v(t_1), \mathbf{B} \downarrow v(t_2) \text{ and } v(t_1)$    | $\not\leqslant^{\mathbf{B}} v(t_2);$ |
| $\mathbf{B} \approx^{v} t_1 \leqslant t_2$                  | otherwise;                                                                                 |                                      |
| $\mathbf{B}\models^v \dot{\neg}\varphi$                     | $\iff  \mathbf{B} \not\models^v \varphi;$                                                  |                                      |
| $\mathbf{B}\not\models^{v} \dot{\neg}\varphi$               | $\iff  \mathbf{B}\models^v \varphi;$                                                       |                                      |
| $\mathbf{B} \approx^v \dot{\neg} \varphi$                   | otherwise;                                                                                 |                                      |
| $\mathbf{B}\models^v \varphi_1 \dot{\wedge} \varphi_2$      | $\iff \mathbf{B} \models^{v} \varphi_1 \text{ and } \mathbf{B} \models^{v} \varphi_2;$     |                                      |
| $\mathbf{B} \not\models^v \varphi_1 \dot{\wedge} \varphi_2$ | $\iff \mathbf{B} \not\models^v \varphi_1 \text{ or } \mathbf{B} \not\models^v \varphi_2;$  |                                      |
| $\mathbf{B} \approx^{v} \varphi_1 \dot{\wedge} \varphi_2$   | otherwise;                                                                                 |                                      |
| $\mathbf{B}\models^v \varphi_1 \dot{\vee}  \varphi_2$       | $\iff \mathbf{B}\models^v \varphi_1 \text{ or } \mathbf{B}\models^v \varphi_2;$            |                                      |
| $\mathbf{B} \not\models^v \varphi_1  \dot{\vee}  \varphi_2$ | $\iff \mathbf{B} \not\models^v \varphi_1 \text{ and } \mathbf{B} \not\models^v \varphi_2;$ |                                      |
| $\mathbf{B} \approx^{v} \varphi_1  \dot{\vee}  \varphi_2$   | otherwise.                                                                                 |                                      |

### Evaluation of quantifier-free formulas in partial rogs

A quantifier-free  $\sigma$ -formula  $\varphi$  is *satisfiable* in a partial rog **B** if there exists a partial assignment v on **B** such that  $\mathbf{B} \models^{v} \varphi$ .

### Measures of complexity of formulas

The standard measure of complexity of a formula  $\varphi$  is its length  $len \varphi$  (the number of occurrences of symbols in  $\varphi$ ).

For us, it's more convenient to work with the following measure:

 $size \varphi = \#$  of variables + # of occurrences of operation symbols in  $\varphi$ .

Surely, size  $\varphi \leq \operatorname{len} \varphi$ , so we are fine.

- ロト - 4 目 ト - 4 日 ト - 1 日

### Main theorem for rogs

#### Lemma

A quantifier-free  $\sigma$ -formula  $\varphi$  is satisfiable in  $\mathcal{ROG}$  iff it is satisfiable in a partial rog whose cardinality does not exceed size  $\varphi$ .

#### Proof.

('only if') Let  $\mathbf{A} \models^{v} \varphi$ , for a rog  $\mathbf{A}$ . Put  $B = \{v(t) \mid t \in terms \varphi\}$ . Then  $|B| \leq size \varphi$ . For all  $a_1, a_2 \in B$  and  $\star \in \{\circ, \backslash, /\}$ , let  $\langle a_1, a_2 \rangle \in dom(\star^{\mathbf{B}})$  if there exists  $t_1 \star t_2 \in terms \varphi$  with  $a_1 = v(t_1)$  and  $a_2 = v(t_2)$ . Then, for every  $\star \in \{\circ, \backslash, /\}$  and  $\langle a_1, a_2 \rangle \in dom(\star^{\mathbf{B}})$ , set  $a_1 \star^{\mathbf{B}} a_2 := a_1 \star^{\mathbf{A}} a_2$ . Set  $\leq^{\mathbf{B}} = \leq^{\mathbf{A}} \upharpoonright_B$ . Then  $\mathbf{B} := \langle B, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, /^{\mathbf{B}}, \leq^{\mathbf{B}} \rangle$  is a partial rog. Let  $\bar{v} := v \upharpoonright_{var \varphi}$ . Then  $\mathbf{B} \models^{\bar{v}} \varphi$ . Thus,  $\varphi$  is satisfiable in a partial rog of the required cardinality.

('if') Let  $\mathbf{B} \models^{\overline{v}} \varphi$ , for a partial rog  $\mathbf{B}$  and a partial assignment  $\overline{v}$ . Let  $\mathbf{B}$  be a partial substructure of a rog  $\mathbf{A}$ . Let v be a assignment on  $\mathbf{B}$  extending  $\overline{v}$ . Then,  $\mathbf{B} \models^{v} \varphi$ . Since  $\mathbf{B}$  is a partial substructure of  $\mathbf{A}$ , it follows that  $\mathbf{A} \models^{v} \varphi$ .

イロト 不得下 イヨト イヨト

### Main theorem for rogs

#### Theorem

Satisfiability of quantifier-free  $\sigma$ -formulas in  $\mathcal{ROG}$  is in NP. Hence, the universal theory of  $\mathcal{ROG}$  is in coNP.

#### Proof.

Let  $\varphi$  be a quantifier-free  $\sigma$ -formula. By Lemma, it is enough to check if it is satisfiable in a partial rog of cardinality  $\leq size \varphi$ . We use a nondeterministic algorithm: Guess a partial  $\sigma$ -structure  $\mathbf{B} = \langle B, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \leq^{\mathbf{B}} \rangle$  with  $|B| \leq size \varphi$  and a partial assignment  $\bar{v}$  on  $\mathbf{B}$ . Check whether  $\mathbf{B}$  is a partial rog and whether  $\mathbf{B} \models^{\bar{v}} \varphi$ . If both checks succeed, return "yes"; otherwise, return "no." In view of Theorem, to check if  $\mathbf{B}$  is a partial rog, it is enough to check properties (i) through (x), which can be done in time polynomial in  $|B| \leq size \varphi$ . Checking whether  $\mathbf{B} \models^{\bar{v}} \varphi$  can also be done in time

polynomial in size  $\varphi$ .

イロト 不得下 イヨト イヨト

### Main theorem for rogs

We say that a k-ary predicate P on a structure with domain A is *non-trivial* if  $P \neq \emptyset$  and  $P \neq A^k$ ; we say that a structure is *non-trivial* if it has a non-trivial predicate definable in its signature.

#### Proposition

Let  $\mathcal{K}$  be a class of structures containing a non-trivial structure. Then, satisfiability of quantifier-free first-order formulas in  $\mathcal{K}$  is NP-hard and, hence, the universal theory of  $\mathcal{K}$  is coNP-hard.

#### Proof.

Reduction from SAT. Use non-triviality to simulate Boolean variables.

#### Theorem

Satisfiability of quantifier-free  $\sigma$ -formulas in  $\mathcal{ROG}$  is NP-complete. Hence, the universal theory of  $\mathcal{ROG}$  is coNP-complete.

(日) (四) (日) (日) (日)

### Unital and integral rogs

Let  $\sigma^1$  be an expansion of signature  $\sigma$  with a constant 1.

#### Definition

A **unital rog** (for short, **urog**) is a  $\sigma^1$ -structure  $\mathbf{A} = \langle A, \circ, \backslash, /, \mathbf{1}, \leqslant \rangle$ , where  $\langle A, \circ, \backslash, /, \leqslant \rangle$  is a rog and  $\mathbf{1} \in A$  such that  $a \circ \mathbf{1} = a = \mathbf{1} \circ a$ , for every  $a \in A$ .

#### Definition

An *integral rog* (for short, *irog*) is a urog where  $a \leq 1$ , for every  $a \in A$ .

Using techniques similar to those used for rogs, we obtain the following:

#### Theorem

Satisfiability of quantifier-free  $\sigma^1$ -formulas both in urogs and irogs is NP-complete. Hence, the universal theories of urogs and irogs are both coNP-complete.

### **Residuated** algebras

#### Definition

Let  $k \ge 1$ . A **residuated** k-algebra is a structure  $\mathbf{A} = \langle A, \mathbf{t}, \mathbf{r}_1, \dots, \mathbf{r}_k, \leqslant \rangle$ , where  $\langle A, \leqslant \rangle$  is a poset and  $\mathbf{A}$  satisfies the k-ary residuation property: for every  $a_1, \dots, a_k, c \in A$  and every  $j \in \{1, \dots, k\}$ ,

$$\mathbf{t}(a_1,\ldots,a_k) \leqslant c \iff a_j \leqslant \mathbf{r}_j(a_1,\ldots,a_{j-1},c,a_{j+1},\ldots,a_k).$$
(7)

#### Definition

A *residuated algebra* is a structure  $\mathbf{A} = \langle A, \rho, \leqslant \rangle$ , where  $\langle A, \leqslant \rangle$  is a poset and  $\rho$  is a family of k-tuples  $\langle \mathbf{t}, \mathbf{r}_1, \dots, \mathbf{r}_k \rangle$ , with  $k \ge 1$ , such that each structure  $\mathbf{A} = \langle A, \mathbf{t}, \mathbf{r}_1, \dots, \mathbf{r}_k, \leqslant \rangle$  is a residuated k-algebra.

#### Theorem

Let C be a class of residuated algebras. Satisfiability of quantifier-free formulas in C is NP-complete. Hence, the universal theory of C is coNP-complete.

# Residuated distributive lattice-oriented groupoids (brdgs)

A residuated distributive lattice-oriented groupoid is a rog where the partial order is a distributive lattice. We shall assume, for convenience, that the lattice is bounded.

Fix a signature  $\sigma^{brdg}$  containing a binary relation symbol  $\leq$ , binary operational symbols  $\land$ ,  $\lor$ ,  $\circ$ ,  $\backslash$ ,  $\land$ , and constants 0 and 1.

#### Definition

A bounded residuated distributive lattice-oriented groupoid (for short, brdg) is a  $\sigma^{brdg}$ -structure  $\mathbf{A} = \langle A, \land, \lor, \circ, \backslash, /, \leqslant, 0, 1 \rangle$ , where  $\langle A, \land, \lor, 0, 1 \rangle$  is a bounded distributive lattice,  $\leqslant$  is the partial order associated with the lattice, and  $\circ, \backslash$  and / are binary operations on A such that, for all  $a, b, c \in A$ , the residuation condition (1) is satisfied.

The class of all brdgs is denoted by  $\mathcal{BRDG}$ .

Inequality is defined in the usual way:  $a \leq b := a \wedge b = a$ .

### Theories of brdgs

The equational theory of  $\mathcal{BRDG}$  is the set of equations valid in  $\mathcal{BRDG}$ . This theory is in coNP-complete (Shkatov and Van Alten, forthcoming).

The quasi-equational theory of  $\mathcal{BROG}$  is the set of quasi-equations valid in  $\mathcal{BRDG}$ . This theory is EXPTIME-complete (this talk; [1]).

The universal theory of  $\mathcal{BRDG}$  is the set of formulas  $\forall x_1 \dots \forall x_n \varphi(x_1, \dots, x_n)$ , where  $\varphi$  is a Boolean combination of atomic formulas, valid in  $\mathcal{BRDG}$ . This theory is EXPTIME-complete (this talk & Algebra Universalis paper).

イロト 不得 トイヨト イヨト

### **Relational** frames

#### Definition (Recall)

A *frame* is a relational structure  $\mathfrak{F} = \langle P, \leq, R \rangle$ , where  $\langle P, \leq \rangle$  is a poset and R is a ternary relation on P that is monotone in the last coordinate and antitone in the first two coordinates: for every  $f, f', g, g', h, h' \in P$ ,

 $R(f,g,h) \ \& \ f' \leqslant f \ \& \ g' \leqslant g \ \& \ h \leqslant h' \Longrightarrow R(f',g',h').$ 

・ 同 ト ・ ヨ ト ・ ヨ ト

### From frames to algebras and back

Let  $\mathfrak{F} = \langle P, \leqslant, R \rangle$  be a frame and U(P) be the set of upsets of  $\mathfrak{F}$ . Define operations on U(P) as before, i.e., by (3)–(5). Then,  $\mathbf{A}_{\mathfrak{F}} = \langle U(P), \cap, \cup, \circ, \backslash, /, \subseteq, \varnothing, P \rangle$  is a brdg.

Let  $\mathbf{A} = \langle A, \wedge, \vee, \circ, \backslash, /, \leq, 0, 1 \rangle$  be a brdg and let P(A) be the set of prime filters of  $\mathbf{A}$ . Define a ternary relation R on by (2):

$$R(f,g,h) \quad \Longleftrightarrow \quad \forall a,b \in A \ [a \in f \ \& \ b \in g \Longrightarrow a \circ b \in h].$$

Then R and  $\subseteq$  satisfy condition (2), hence  $\mathfrak{F}_{\mathbf{A}} = \langle P(A), \subseteq, R \rangle$  is a frame.

#### Fact

Let  $\mathbf{A} = \langle A, \wedge, \vee, \circ, \backslash, /, \leq, 0, 1 \rangle$  be a brdg. The map  $\mu \colon A \to U(P)$ defined by  $\mu(a) = \{ f \in P \mid a \in f \}$  is an embedding of  $\mathbf{A}$  into  $\mathbf{A}_{\mathfrak{F}\mathbf{A}}$ .

- ロト - 4 目 ト - 4 日 ト - 1 日

### Partial $\sigma^{brdg}$ -structures and partial rdgs

#### Definition

A partial  $\sigma^{brdg}$ -structure is a tuple  $\mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \langle^{\mathbf{B}}, \otimes^{\mathbf{B}}, 0^{\mathbf{B}}, 1^{\mathbf{B}} \rangle$ , where  $B \neq \emptyset, \langle^{\mathbf{B}} \subseteq B \times B, 0^{\mathbf{B}}, 1^{\mathbf{B}} \in B$ , and  $\wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}$ , and  $/^{\mathbf{B}}$  are partial binary operations on B (i.e., partial functions  $B \times B \mapsto B$ ).

#### Definition

A *partial brdg* is a partial  $\sigma^{brdg}$ -structure  $\mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \circ^{\mathbf{B}}, \setminus^{\mathbf{B}}, \leqslant^{\mathbf{B}} \rangle$  that is a partial substructure of a brdg, i.e., such that there exists a brdg  $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \circ^{\mathbf{A}}, \setminus^{\mathbf{A}}, \leqslant^{\mathbf{A}} \rangle$  with  $B \subseteq A, \leqslant^{\mathbf{B}} = \leqslant^{\mathbf{A}} \upharpoonright_{B}, 0^{\mathbf{B}} = 0^{\mathbf{A}},$   $1^{\mathbf{B}} = 1^{\mathbf{A}}, \text{ and } a \star^{\mathbf{B}} b = a \star^{\mathbf{A}} b$ , for every  $\star \in \{\wedge, \vee, \circ, \backslash, /\}$  and every  $\langle a, b \rangle \in \operatorname{dom} \star^{\mathbf{B}}.$ 

### Embedding a partial structure into a structure

#### Definition

Let  $\mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \circ^{\mathbf{B}}, \rangle^{\mathbf{B}}, \langle^{\mathbf{B}}, \rangle^{\mathbf{B}}, \langle^{\mathbf{B}}\rangle$  be a partial  $\sigma^{brdg}$ -structure and  $\mathbf{A} = \langle A, \wedge^{\mathbf{A}}, \vee^{\mathbf{A}}, \circ^{\mathbf{A}}, \backslash^{\mathbf{A}}, \langle^{\mathbf{A}}, \rangle^{\mathbf{A}}, \langle^{\mathbf{A}}\rangle$  a  $\sigma^{brdg}$ -structure. An *embedding* of **B** into **A** is a map  $\alpha : B \to A$  such that

- $a \leq {}^{\mathbf{B}} b \iff \alpha(a) \leq {}^{\mathbf{A}} \alpha(b)$ , for every  $a, b \in B$ ;
- $\alpha(0^{\mathbf{B}}) = 0^{\mathbf{A}};$
- $\alpha(1^{\mathbf{B}}) = 1^{\mathbf{A}};$
- $\alpha(a \star^{\mathbf{B}} b) = \alpha(a) \star^{\mathbf{A}} \alpha(b)$ , for every  $\star \in \{\land, \lor, \circ, \backslash, /\}$  and every  $\langle a, b \rangle \in \operatorname{dom} \star^{\mathbf{B}}$ .

#### Fact

If a partial  $\sigma^{brdg}$ -structure **B** is embeddable into a brdg **A**, then **B** is isomorphic to a partial substructure of **A**; hence, **B** is a partial brdg.

イロト イポト イヨト イヨト

Basic setting rogs brdgs References

### Characterization of partial bounded lattices

#### Fix the signature $\sigma^{b\ell}$ containing $\land$ , $\lor$ , 0, and 1.

#### Theorem (Van Alten 2013)

A partial  $\sigma^{b\ell}$ -structure  $\mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \leqslant^{\mathbf{B}}, 0^{\mathbf{B}}, 1^{\mathbf{B}} \rangle$  is a partial bounded lattice if  $\leqslant^{\mathbf{B}}$  is a partial order on B, with bounds  $0^{\mathbf{B}}$  and  $1^{\mathbf{B}}$ , and  $\wedge^{\mathbf{B}}$  and  $\vee^{\mathbf{B}}$  are compatible with  $\leqslant^{\mathbf{B}}$ , i.e.,

- if  $\langle a, b \rangle \in \operatorname{dom} \wedge^{\mathbf{B}}$ , then  $a \wedge^{\mathbf{B}} b$  is the glb w.r.t.  $\leq^{\mathbf{B}}$ ;
- if  $\langle a, b \rangle \in \operatorname{dom} \vee^{\mathbf{B}}$ , then  $a \vee^{\mathbf{B}} b$  is the lub w.r.t.  $\leq^{\mathbf{B}}$ .

### Characterization of partial bounded distributive lattices

#### Definition

Let  $\mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \leqslant^{\mathbf{B}}, 0^{\mathbf{B}}, 1^{\mathbf{B}} \rangle$  be a partial lattice. A set  $f \subseteq B$  is a *prime filter* in **B** if the following hold:

- $0^{\mathbf{B}} \notin f$  and  $1^{\mathbf{B}} \in f$ ;
- if  $a \in f$  and  $a \leq \mathbf{B} b$ , then  $b \in f$ ;
- if  $a \in f$ ,  $b \in f$ , and  $\langle a, b \rangle \in \operatorname{dom} \wedge^{\mathbf{B}}$ , then  $a \wedge^{\mathbf{B}} b \in f$ ;
- if  $a \notin f$ ,  $b \notin f$ , and  $\langle a, b \rangle \in \operatorname{dom} \wedge^{\mathbf{B}}$ , then  $a \vee^{\mathbf{B}} b \notin f$ .

#### Theorem (Van Alten 2013)

A partial  $\sigma^{b\ell}$ -structure  $\mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \leqslant^{\mathbf{B}}, 0^{\mathbf{B}}, 1^{\mathbf{B}} \rangle$  is a partial bounded distributive lattice if  $\mathbf{B}$  is a partial bounded lattice and, moreover, there exists a set F of prime filters of  $\mathbf{B}$  such that

$$\forall a, b \in B \ [a \notin^{\mathbf{B}} b \Rightarrow \exists f \in F \ (a \in f \& b \notin F)].$$
(8)

・ロト ・ 同ト ・ ヨト ・ ヨト

### Characterization of partial brdgs

#### Theorem

 $\begin{array}{lll} A \ partial \ \sigma^{brdg} \text{-structure } \mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \circ^{\mathbf{B}}, \rangle^{\mathbf{B}}, \langle \mathbb{S}, | B, \langle \mathbb{S}, \mathbb{O}^{\mathbf{B}}, \mathbb{1}^{\mathbf{B}} \rangle \ is \ a \\ partial \ brdg \ iff \ its \ \sigma^{b\ell} \text{-reduct is a partial bounded lattice and there} \\ exists \ a \ set \ \mathcal{F} \ of \ prime \ filters \ of \ \mathbf{B} \ such \ that \ (8) \ holds \ and, \ moreover, \\ \forall h \in F \forall \langle a, b \rangle \in \mathrm{dom} \circ^{\mathbf{B}} \quad [a \circ^{\mathbf{B}} b \in h \Rightarrow \exists f, g \in F(a \in f \ \& \ b \in g \ \& \ R^{\mathbf{B}}(f, g, h))]; \\ \forall g \in F \forall \langle a, b \rangle \in \mathrm{dom} \ \rangle^{\mathbf{B}} \quad [a \wedge^{\mathbf{B}} b \notin g \Rightarrow \exists f, h \in F(a \in f \ \& \ b \notin h \ \& \ R^{\mathbf{B}}(f, g, h)]; \\ \forall f \in F \forall \langle a, b \rangle \in \mathrm{dom} \ \rangle^{\mathbf{B}} \quad [a \wedge^{\mathbf{B}} b \notin f \Rightarrow \exists g, h \in Fa \in g \ \& \ b \notin h \ \& \ R^{\mathbf{B}}(f, g, h)]; \\ where \\ R^{\mathbf{B}}(f, g, h) \ \ \equiv \ \forall \langle a, b \rangle \in \mathrm{dom} \circ^{\mathbf{B}}(a \in f \ \& \ b \in g \Rightarrow a \circ^{\mathbf{B}} b \in h) \ \& \end{array}$ 

$$\forall \langle a, b \rangle \in \text{dom} \setminus^{\mathbf{B}} (a \in f \& a \setminus^{\mathbf{B}} b \in g \Rightarrow b \in h) \& \\ \forall \langle a, b \rangle \in \text{dom} /^{\mathbf{B}} (b/^{\mathbf{B}} a \in f \& a \in g \Rightarrow b \in h).$$

### Characterization of partial brdgs (contd)

#### Proof.

('only if') Let  $\mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \langle^{\mathbf{B}}, 0^{\mathbf{B}}, 1^{\mathbf{B}} \rangle$  be a partial substructure of a brdg  $\mathbf{A}$ . Then,  $\langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, 0^{\mathbf{B}}, 1^{\mathbf{B}} \rangle$  is a partial bounded lattice. We need to exhibit a set of filters satisfying (8). Set  $F := \{\mathcal{F} \cap B \mid \mathcal{F} \text{ is a prime filter of } \mathbf{A}\}$ . It can be shown that F is the required set of prime filters.

('if') Let  $\mathbf{B} = \langle B, \wedge^{\mathbf{B}}, \vee^{\mathbf{B}}, \circ^{\mathbf{B}}, \backslash^{\mathbf{B}}, \langle^{\mathbf{B}}, 0^{\mathbf{B}}, 1^{\mathbf{B}} \rangle$  be a partial  $\sigma^{brdg}$ -structure satisfying the requirements of the theorem. The structure  $\mathfrak{F} = \langle F, \subseteq, R^{\mathbf{B}} \rangle$  is a frame. Let  $\mathbf{A}_{\mathfrak{F}} = \langle U(F), \cap, \cup, \circ, \backslash, /, \subseteq, \emptyset, F \rangle$  be the brdg for  $\mathfrak{F}$ . Define the map  $\mu : B \to U(F)$  by  $\mu(a) := \{f \in F \mid a \in f\}$ . It can be shown that  $\mu$  is an embedding of  $\mathbf{B}$  into  $\mathbf{A}_{\mathfrak{F}}$ . Hence,  $\mathbf{B}$  is a partial brdg.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

### Upper bound for brdgs

#### Lemma

A quantifier-free  $\sigma^{brdg}$ -formula  $\varphi$  is satisfiable in  $\mathcal{BRDG}$  iff it is satisfiable in a partial brdg whose cardinality does not exceed size  $\varphi + 2$ .

#### Theorem

Satisfiability of quantifier-free  $\sigma^{brdg}$ -formulas in  $\mathcal{BRDG}$  is in EXPTIME. Hence, the universal theory of  $\mathcal{BRDG}$  is in EXPTIME.

・ 同 ト ・ ヨ ト ・ ヨ ト

### Upper bound for brdgs

#### Proof.

Let  $\varphi$  be a quantifier-free  $\sigma^{brdg}$ -formula. By Lemma, it is enough to check if it is satisfiable in a partial brdg of cardinality  $\leq size \varphi + 2$ . We use the following deterministic algorithm to check if a partial  $\sigma^{brdg}$ -structure **B** is a partial brdg:

- (1) Check that  $\leq^{\mathbf{B}}$  is a partial order on B, that  $0^{\mathbf{B}}$  and  $1^{\mathbf{B}}$  are bounds, and that  $\wedge^{\mathbf{B}}$  and  $\vee^{\mathbf{B}}$  are compatible with  $\leq^{\mathbf{B}}$  (polynomial);
- (2) Check if there exists a set of prime filters of **B** with the required properties. To that end,
  - Generate all prime filters of **B** (exponential in |**B**|);
  - Repeatedly eliminate filters not meeting the desired properties (exponential in |**B**|);
  - If the resultant set is empty, return 'no'; otherwise, check (8).

Using the outlined algorithm, we check all the structures  $\sigma^{brdg}$ -structures of size  $\leq size \varphi$  to see if they are partial brdgs and, if so, check if  $\varphi$  is satisfied there under some partial assignment.

(日) (四) (日) (日) (日)

### Lower bound for brdgs

By reduction from a set of modal formulas describing an  $n \times n$  tiling problem through the universal theory of bounded distributive lattices with a unary operator.

#### Theorem

Satisfiability of quantifier-free  $\sigma^{brdg}$ -formulas in  $\mathcal{BRDG}$  is EXPTIME-complete. Hence, the universal theory of  $\mathcal{BRDG}$  is EXPTIME-complete.

Since the negation of a formula obtained through the reduction is a quasi-equation, we also obtain the following:

#### Theorem

The quasi-equational theory of  $\mathcal{BRDG}$  is EXPTIME-complete.

イロト 不得下 イヨト イヨト

### References

#### E. Aarts and K. Trautwein.

Non-associative Lambek categorial grammar in polynomial time. Mathematical Logic Quarterly, 41:476–484, 1995.

#### W. Buszkowski.

#### Lambek Calculus with Nonlogical Axioms.

Claudia Casadio and Philip J. Scott and Robert A.G. Seely (eds.) Language and Grammar: Studies in Mathematical Linguistics and Natural Language, Center for the Study of Language and Information, 2005, 77–94.



#### J. M. Dunn.

#### Partial gaggles applied to logics with restricted structural rules.

Schroeder-Heister P, Došen K (eds) Substructural logics, Studies in Logic and Computation, vol 2, Clarendon Press, pp 72–108

### References (control)



#### D. Shkatov and C. J. Van Alten.

Complexity of the universal theory of bounded residuated distributive lattice-ordered groupoids.

Algebra Universalis, 80(3):36, 2019.



#### D. Shkatov and C. J. Van Alten.

Complexity of the universal theory of residuated ordered groupoids. *Journal of Logic, Language and Information*, 2023. https://doi.org/10.1007/s10849-022-09392-9.



#### C. J. Van Alten.

Partial algebras and complexity of satisfiability and universal theory for distributive lattices, Boolean algebras and Heyting algebras.

Theoretical Computer Science 501:82–92.

(1日) (1日) (1日)

## Thank you!

Dmitry Shkatov Complexity of universal theories of residuated structures

イロト イヨト イヨト イヨト

э