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1 Introduction

In propositional modal logic, completeness through canonicity is a powerful
technique for establishing Kripke completeness. A number of general results—
among them, Sahlqvist canonicity theorem—show that modal propositional
logics axiomatized by formulas of particular form are canonical and, therefore,
Kripke complete. Moreover, it is known that canonicity and Kripke complete-
ness of propositional logics transfer to their fusions [1,3]. By contrast, not much
is known about canonicity of predicate modal (even monomodal) logics. The
authors are only aware of the following general canonicity results for predicate
modal logics: the Tanaka-Ono theorem for constant domains [5], canonicity of
the minimal extensions of propositional one-way PTC logics with expanding
domains [2, Theorem 6.1.29], and transfer of canonicity under boxing [4, The-
orem 4.1]. Neither canonicity nor completeness transfers from logics to their
fusions have been studied in the predicate setting. In this brief note, we show
that, in predicate logic, just as in propositional logic, canonicity transfers to
fusions.

2 Preliminaries

We consider logics in two languages: the monomodal predicate language L1 con-
tains countably many free variables (denoted by a, a1, b, . . .), countably many
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bound variables (denoted by x, y, x1, . . .),
1 countably many predicate letters

of every arity, the Boolean connectives ¬ and ∧, the quantifier symbol ∀, and
the unary modality □1; the bimodal language L2 extends L1 with the unary
modality □2. Formulas are defined by recursion: atomic formulas are expres-
sions of the form P (a1, . . . , an); if A and B are formulas, then so is (A∧B); if A
is a formula, then so are ¬A, □iA, and ∀x [x/a]A, where [x/a] is a substitution
of a bound variable x not occurring in A for a free variable a. As usual, ⊥
abbreviates (B∧¬B), for some fixed B. An occurrence of a free variable a in a
formula A is a triple (A, i, a) such that a is the ith symbol of A. The universal
closure of a formula A, which is unique up to the renaming of variables, is
denoted by ∀̄A.

We denote by □2Fma the set of all L2-formulas of the form □2A.
An N -modal predicate logic (in this paper, N ∈ {1, 2}) is a set of

LN -formulas containing the minimal N -modal propositional logic KN and
closed under Substitution (Sub), Modus Ponens (MP), Generalization (Gen),
and Necessitation for □1, . . . , □N . The fusion L1 ∗ L2 of 1-modal predicate
logics L1 and L2 is the logic K2 +L1 ∪L+1

2 , where L+1
2 is obtained from L2 by

replacing every occurrence of □1 with □2.
We work with Kripke semantics with expanding domains (see, e.g., [2,

Chapter 3]). A predicate Kripke N -frame with expanding domains is a tuple
F = (F,D) where F = (W,R1, . . . , RN ) is a (propositional) Kripke N -frame
and D := {Dw | w ∈ W} is a system of non-empty domains over F such that,
if i ⩽ N and wRiw

′, then Dw ⊆ Dw′ . The following fact is well known:

Fact 2.1 Let F be a predicate Kripke 2-frame, and let L1 and L2 be predicate
monomodal logics. If F |= L1 and F |= L2, then F |= L1 ∗ L2.

We write (W,R) ⊆ (W ′, R′) if a Kripke 1-frame (W,R) is a subframe of
a Kripke 1-frame (W ′, R′), and (W,R) ⊑ (W ′, R′) if (W,R) is a generated
subframe of (W ′, R′).

For the construction of canonical models, we use languages enriched with
a countable set of constants (denoted by c, c1, . . .). Constants behave just like
free variables, except that quantified formulas cannot be obtained by replacing
constants with bound variables and prefixing a quantifier. A set of sentences
possibly containing constants is called a theory. If Γ is a theory, the set of all
constants occurring in Γ is denoted by CΓ and the set of all sentences possibly
containing constants from CΓ is denoted by L(Γ). A theory Γ is called negation-
saturated if, for every A ∈ L(Γ), either A ∈ Γ or ¬A ∈ Γ. A theory Γ is
called Henkin if, whenever ∃xA(x) ∈ L(Γ), there exists c ∈ CΓ such that
∃xA(x) → A(c) ∈ Γ.

We say that a formula, possibly with constants, A is L-provable, and write
⊢L A, if A = [c/a]B, for some B ∈ L and some renaming [c/a] of some free
variables of B with constants.

We say that a sentence A is L-derivable from a theory Γ, and write Γ ⊢L A,

1 Note that our syntax differs from that used in [2], where there are no separate stocks of
free and bound variables.
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if there exists a sequence A1, . . . , An of formulas, called an L-derivation of A
from Γ, such that, for every Ai, either Ai ∈ Γ or ⊢L Ai or else Ai is obtained
from Aj , with j < i, by either (MP) or (Gen). A theory Γ is L-consistent if
Γ ̸⊢L ⊥. The following fact is well known and proven as for the classical logic:

Fact 2.2 If Γ is a theory, a is a free variable, and c is a constant such that
c /∈ CΓ, then Γ ⊢L A implies Γ ⊢L [c/a]A.

Let L be an N -modal predicate logic. An L-place is a negation-saturated
L-consistent Henkin theory Γ such that the set of constants not in CΓ is infinite.
The canonical predicate frame for L is the tuple FL = (WL, R1, . . . , RN , DL)
where WL is the set of all L-places, ΓRi∆ holds iff □iA ∈ Γ implies A ∈ ∆, and
the domain function is defined by DL(Γ) := CΓ. It is well-known that every
non-theorem of L is refuted on FL.

By analogy with propositional logic, we call a predicate logic canonical if it
is validated by its canonical predicate frame. 2 Every canonical predicate logic
is Kripke complete: if a predicate logic L is canonical, then L = {A | FL |= A}.

3 Main result

In view of Fact 2.1, our aim is to show that if L1 and L2 are canonical
monomodal predicate logics, then the canonical predicate frame for L1 ∗ L2

validates both L1 and L2. The arguments for L1 and L2 are symmetric, so we
give only one in full detail.

Define a binary relation ∼ on Fma so that A ∼ B if B can be obtained by
replacing occurrences of free variables in A with some free variables; e.g.,

□2∃x(P (x, a, b) ∧Q(x, b, c)) ∼ □2∃x(P (x, a, d) ∧Q(x, a, b)), (∗)

i.e, the only occurrence of a is replaced with a, the first occurrence of b with d,
the second occurrence of b with a, and the only occurrence of c with b. It
should be clear that ∼ is an equivalence; we write [A] for {B | B ∼ A}.

Enrich L1 with a countable set of predicate letters of each arity; denote by
S the set of all newly introduced predicate letters and by (L1 + S) the set of
formulas of the resultant language; denote by AFS the set of atomic formulas
with predicate letters from S.

Let s : □2Fma/∼ → S be a bijection such that the arity of the letter
s([□2A]) equals the number of occurrences of free variables in □2A; the map s is
well defined since all formulas from [□2A] have the same number of occurrences
of free variables (e.g., four in formulas from (∗)). We write□2A(a) to mean that
a is the list, with repetitions, of free variables with occurrences in □2A (e.g.,
in the first formula from (∗), a = (a, b, b, c)) and define a (unique) bijection
s̄ : □2Fma → AFS so that s̄(□2A(a)) := s([□2A(a)])(a); the atomic formula
s̄(□2A) is called the surrogate of □2A. Next, define a map e : L2 → (L1 + S)

2 Note that, in general, canonicity may depend on the cardinality of the set of constants used
in the construction of a canonical predicate frame; for the purposes of this paper, however,
this issue is immaterial.
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by

e(A) := A if A is atomic; e(∀x [x/a]A) := ∀x[x/a] e(A);

e(¬A) := ¬e(A); e(□1A) := □1e(A);

e(A ∧B) := e(A) ∧ e(B); e(□2A) := s̄(□2A).

The formula e(A) ∈ (L1 + S) is called the ersatz of A ∈ L2. If Γ ⊆ L2, then
Γe := {e(A) | A ∈ Γ}. Note that the map e is a bijection; hence, we can
define the map r := e−1. The formula r(A) ∈ L2 is called the reconstruction
of A ∈ (L1 + S). Note that r(A) = A if A does not contains predicate letters
from S. If Γ ⊆ (L1 + S), then Γr := {r(A) | A ∈ Γ}.
Lemma 3.1 For every A ∈ (L1 + S), the formula r(A) is a substitution in-
stance of A.

Proof. Induction on A. 2

Let L := L1 ∗ L2, and let

FL := (WL, RL, DL) and FL1
:= (WL1

, RL1
, DL1

)

be the canonical predicate frames of, respectively, L and L1; let, also,

W e
L := {Γe | Γ ∈ WL}.

Lemma 3.2 If Γ ⊆ L2 is negation-saturated and Henkin, then so is Γe.

Proof. To see that Γe is negation-saturated, assume that A ∈ L(Γ)−Γe. Then,
r(A) /∈ Γ, and so, since Γ is negation-saturated, ¬r(A)(= r(¬A)) ∈ Γ. Thus,
e(r(¬A))(= ¬A) ∈ Γe. The argument for Henkinness is similar. 2

Lemma 3.3 If Γ ⊆ (L1 + S) is negation-saturated and Henkin, then so is Γr.

Proof. Similar to the proof of Lemma 3.2. 2

Lemma 3.4 W e
L ⊆ WL1 .

Proof. Let Γ be an L-place. By Lemma 3.2, Γe is negation-saturated and
Henkin. Clearly, CΓe = CΓ. It remains to show that Γe is L1-consistent.

Suppose not, i.e., Γe ⊢L1
⊥. Then, there exists an L1-derivation

A1, A2, . . . ,⊥ of ⊥ from Γe. Then, as we next show,

r(A1), r(A2), . . . , r(⊥)(= ⊥)

is an L-derivation of ⊥ from Γ. Indeed, if Ai ∈ Γe, then r(Ai) ∈ (Γe)r(= Γ).
If ⊢L1 Ai, then there exists a renaming [a/c] of the constants occurring in Ai

into free variables such that [a/c]Ai ∈ L1. Since L1 ⊆ L1 ∗ L2(= L), surely
[a/c]Ai ∈ L; hence, ⊢L Ai. Since L is closed under substitution, it follows,
by Lemma 3.1, that ⊢L r(Ai). Lastly, the map r clearly commutes with both
(MP) and (Gen). Thus, Γ ⊢L ⊥, contrary to L-consistency of Γ. 2

If Γ is a set of formulas, we denote by Γ the set of sentences from Γ.
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Lemma 3.5 If Γ ∈ W e
L, then L

e ⊆ Γ.

Proof. Let Γ ∈ W e
L. Then, Γ = ∆e, for some ∆ ∈ WL. Since, by [2, Lemma

6.1.4(1)], L ⊆ ∆, it follows that L
e ⊆ ∆e(= Γ). 2

Lemma 3.6 If Γ ∈ WL1
and L

e ⊆ Γ, then Γ ∈ W e
L.

Proof. Suppose that L
e ⊆ Γ ∈ WL1 . We prove that Γr ∈ WL; since Γ = (Γr)e,

it then follows that Γ ∈ W e
L. By Lemma 3.3, Γr is negation-saturated and

Henkin. Clearly, CΓr = CΓ. It remains to show that Γr is L-consistent.
Suppose not, i.e., Γr ⊢L ⊥(= r(⊥)). We will prove that, then, Γ ⊢L1

⊥. To
that end, we show that ∆ ⊢L A and L

e ⊆ ∆e imply ∆e ⊢L1
e(A), for every

∆ ∈ WL and every A ∈ L2. (The required conclusion then follows from the
fact that (Γr)e = Γ.) We proceed by induction on the L-derivation of A from
∆. If B ∈ ∆, then e(B) ∈ ∆e. Suppose, next, that ⊢L B. We may assume
that B does not contain any constants from ∆, and hence any constants from
∆e. Since ⊢L B, there exists a renaming [a/c] of constants into free variables
such that [a/c]B ∈ L. Let B′ := [a/c]B. By (Gen), ∀̄B′ ∈ L. Since, by
assumption, L

e ⊆ ∆e, it follows that e(∀̄B′)(= ∀̄ e(B′)) ∈ ∆e. Thus, we can
add ∀̄ e(B′) and the L1-theorem ∀̄ e(B′) → e(B′) to any L1-derivation from ∆e;
hence, ∆e ⊢L1

e(B′). Now, let [c/a] := [a/c]−1. Then, by Fact 2.2 and by our
assumption about constants, ∆e ⊢L1

[c/a]e(B′)(= e([c/a]B′) = e(B)). Lastly,
the map e clearly commutes with (MP) and (Gen). Hence, Γ ⊢L1

⊥, contrary
to L1-consistency of Γ. 2

Let Re
L := RL1

↾ W e
L.

Lemma 3.7 (W e
L, R

e
L) ⊑ (WL1

, RL1
).

Proof. It follows from Lemma 3.4 and the definition of Re
L that (W e

L, R
e
L) ⊆

(WL1
, RL1

). To see that RL1
(W e

L) ⊆ W e
L, suppose that Γ ∈ W e

L and ΓRL1
∆.

Since Γ ∈ W e
L, it follows, by Lemma 3.5, that L

e ⊆ Γ. Since □1 L ⊆ L,

surely (□1 L)
e(= □1L

e
) ⊆ Γ. Since ΓRL1∆, the definition of RL1 implies that

L
e ⊆ ∆. Hence, by Lemma 3.6, ∆ ∈ W e

L. 2

Proposition 3.8 If FL1 |= L1, then FL1∗L2 |= L1.

Proof. Suppose that FL1
|= L1. Since e is an embedding, Lemma 3.7 means

that the frame (WL1∗L2
, R1) is isomorphic to a generated subframe of FL1

.
Since validity of predicate formulas is preserved under generated subframes [2,
Lemma 3.3.18], it follows that (WL1∗L2 , R1) |= L1 and hence FL1∗L2 |= L1. 2

Lemma 3.9 If FL2 |= L2, then FL1∗L2 |= L2.

Proof. The argument here is analogous to that of Proposition 3.8. We define
surrogates of formulas of the form □1A in the language (L2 + S), and proceed
as before, but swapping the roles of L1 and L2. 2

Theorem 3.10 Let L1 and L2 be predicate modal logics. Then,

FL1
|= L1 & FL2

|= L2 =⇒ FL |= L1 ∗ L2.
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In other words, the fusion of two canonical predicate modal logics is a canonical
predicate modal logic.

Proof. Immediate from Proposition 3.8, Lemma 3.9 and Fact 2.1. 2

Since an analogue of Theorem 3.10 can be proven for polymodal logics, we
obtain the following:

Corollary 3.11 Let L1, . . . , Ln be predicate modal logics. Then,

FL1 |= L1 & . . . & FLn |= Ln =⇒ FL |= L1 ∗ . . . ∗ Ln.

In other words, the fusion of any number of canonical predicate modal logics is
a canonical predicate modal logic.

The previous treatment is likely to extend to logics of constant domains,
with canonicity replaced by C-canonicity [2, Chapter 7]:

Conjecture 3.12 For predicate modal logics, C-canonicity transfers to fu-
sions.

Also, we believe that additional techniques should enable us to prove trans-
fer of Kripke completeness rather than simply canonicity:

Conjecture 3.13 For predicate modal logics, strong Kripke completeness and
Kripke completeness transfer to fusions.
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