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Abstract

We study the system of classes of superintuitionistic predicate logics induced by the
equivalence relation identifying logics with the same positive fragment. We call such
classes positive slices. We state a condition guaranteeing that logics determined by
classes of Kripke frames or Kripke sheaves share a positive fragment, and so belong
to the same positive slice. We then use this condition to prove that some well-known
superintuitionistic predicate logics have the same positive fragment. We also present
an example of a continuum of logics whose positive slices are singletons.
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1 Introduction

Studying classes of logics, defined either syntactically or semantically, rather
than particular logical systems, has proved a fruitful approach to the study
of superintuitionistic and modal propositional logics; see, e.g., [1,24] for sys-
tematic surveys. A similar approach has also been fruitful in the study of
superintuitionistic and modal predicate logics; see, e.g., [5,15,4,11]. Often, in
particular in [5,15,4,11], the unit of study is then a class of logics lying between
two particular system; such classes are often called intervals or, as in this pa-
per, segments. For example, [11] proves that all superintuitionistic predicate
logics between the intuitionistic predicate logic QH and the predicate coun-
terpart QKC of the propositional logic KC of the weak law of the excluded
middle are undecidable in languages with two individual variables and a single
monadic predicate letter.
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Recently, Skvortsov [20], developing ideas of Hosoi [6,7] for propositional
logics, proposed to classify superintuitionistic predicate logics into systems of
slices, which are convex classes induced by an equivalence relations on the class
of all logics (we note that segments are convex, and so are subsumed by this
approach). This slice-based approach to the study of predicate logics appears
to be more powerful than the segment-based one: segments are usually chosen
so that all their logics share a common property; thus, by considering slices of
all logics sharing a property, rather than particular segments, we might obtain
more general, in the sense of the set of the logics covered, results. Obviously,
different equivalence relations, and therefore different systems of slices, turn
out to be useful for different purposes.

The present paper is meant to be a first sketch of a study of the system
of slices induced by the equivalence relation identifying logics with the same
positive fragment. This equivalence relation proves useful in, among others,
the study of the computational properties of superintuitionistic predicate log-
ics [11,12]. For a study of another system of slices, see [18,20].

In this paper, we obtain (Proposition 5.8) a continuum of singleton posi-
tive slices, thus proving the existence of a continuum of logics with a unique
positive fragment. On the other hand, we identify, in Theorem 5.12 (Main
Theorem), conditions ensuring that logics determined by classes of Kripke
frames or Kripke sheaves have the same positive fragment; this allows us to
obtain examples of non-trivial positive slices of superintuitionistic predicate
logics. Theorem 5.12 generalizes an observation by Yankov [25, Theorem] that
the intuitionistic propositional logic H has the same positive fragment as the
propositional logic KC = H+¬p∨¬¬p, as well as a similar observation about
corresponding predicate logics [13, Proposition 10.2]. Using Theorem 5.12, we,
in particular, prove (Propositions 5.14, 5.16, and 5.17) that some well-known
superintuitionistic predicate logics have identical positive fragments. We note
that, in this context, the use of Kripke sheaf semantics leads to stronger results
than the use of the more familiar Kripke frame semantics (see Remark 5.21).
We mention important classes of posets to which Theorem 5.12 does not apply;
the study of positive fragments of the logics of those posets requires techniques
other than those used in this paper.

The paper is structured as follows. Section 2 contains preliminaries on
superintuitionistic predicate logics and formulas. In Section 3, we define the
system of positive slices in the lattice of superintuitionistic predicate logics and
show that the lattice of slices is isomorphic to the lattice of positively axiomati-
zable logics. In Section 4, we recall Kripke sheaf and Kripke frame semantics for
superintuitionistic predicate logics. In Section 5, we present our main results on
positive slices. Subsection 5.1 contains an example of a continuum of degenerate
(singleton) positive slices. Subsection 5.2 contains our Main Theorem stating
conditions guaranteeing that logics determined by classes of Kripke frames or
Kripke sheaves have the same positive fragment; it also contains consequences
of Main Theorem concerning well-known superintuitionistic predicate logics.
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Lastly, in Subsection 5.3, we mention important logics to which Main Theorem
does not apply. Section 6 outlines directions for future work.

2 Preliminaries on logics and formulas

We consider logics in a pure (i.e., without individual constants, function sym-
bols, or equality) predicate language L containing the following symbols: count-
ably many individual variables; for every n > 0, countably many n-ary predi-
cate letters (nullary letters are identified with proposition letters); the proposi-
tional constant ⊥; the binary connectives ∧, ∨, and→; the quantifier symbols ∃
and ∀. The definition of L-formulas (or, simply, formulas) is standard. We use
the standard abbreviations ¬A = A→ ⊥ and A↔ B = (A→ B) ∧ (B → A),
and adopt the usual conventions about omitting parentheses. In what follows,
the language L is identified with the set of its formulas. A formula is proposi-
tional if it contains no individual variables, and hence no non-nullary predicate
letters and no quantifier symbols. The free variables of a formula are its pa-
rameters. The universal closure of a formula A, which may be assumed to be
unique up to the enumeration of A’s parameters, is denoted by ∀̄A.

2.1 The lattice of superintuitionistic predicate logics

A superintuitionistic predicate logic, or simply logic, is a set of formulas includ-
ing the intuitionistic predicate logic QH and closed under Predicate Substitu-
tion, Modus Ponens, and Generalisation; thus, QH is the smallest superintu-
itionistic predicate logic. If L is a logic and A a formula, then L ` A means the
same as A ∈ L. The smallest logic including a logic L and a set Γ of formulas
is denoted by L + Γ; if A is a formula, we write L + A instead of L + {A}.
The logical sum of a family {Lθ : θ ∈ Θ}, where Θ is an index set, of logics is
the smallest logic including

⋃
{Lθ : θ ∈ Θ}; notice that the logical sum of the

empty family of logics is QH and that the logical sum of L1 and L2 is the logic
L1 + L2. If A and B are formulas and L a logic, then we say that

• A implies B in L, and write A⇒L B, if L ` A→ B;

• B is derivable from A, and write A ` B, if QH +A ` B;

• A and B are equivalent in L if L ` A↔ B;

• A and B are deductively equivalent if they are mutually derivable, i.e., if
A ` B and B ` A, or, equivalently, if QH +A = QH +B.

It should be clear that, if A and B are deductively equivalent, then A ∈ L if,
and only if, B ∈ L, for every logic L.

It is well known that the set of all logics forms a lattice with respect to
the set-theoretic inclusion; we denote this lattice by L; algebraically, the meet
of L1,L2 ∈ L is the logic L1 ∩ L2, and the join of L1,L2 ∈ L is the logic
L1 +L2. The least element of L is the logic QH; the greatest, the (absolutely)
inconsistent logic L (the set of all formulas), which, obviously, coincides with
both QH + p and QH + ⊥. The lattice L is complete since intersections and
logical sums of arbitrary (finite or infinite) families of logics are themselves
logics.
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2.2 Delta-operation on formulas

In Section 5.3, we use the δ-operation on formulas introduced by Hosoi [7].
Here, we recall its definition and the syntactic properties used later on; for
more background, consult [4, Section 1.16].

If A is a formula and p a proposition letter not occurring in A, then
δA = q ∨ (q → A). The following is well known (see, e.g., [4, Lemma 1.16.6])
and easy to check:

Fact 2.1 For every formulas A and B,

(1) QH ` A→ δA.

(2) QH ` δ(A→ B)→ (δA→ δB).

(3) QH ` δ(A ∧B)↔ (δA ∧ δB).

2.3 Some important formulas

We shall consider the following standard formulas (here, h < ω and n < ω):

J = ¬p ∨ ¬¬p;
Z = (p→ q) ∨ (q → p);
CD = ∀x (P (x) ∨ q)→ ∀xP (x) ∨ q;
K = ∀x¬¬P (x)→ ¬¬∀xP (x);
E = ¬¬∃xP (x)→ ∃x¬¬P (x);
JE = ¬∃xP (x) ∨ ∃x¬¬P (x);
U = ∀x∀y (P (x)→ P (y));
U ′ = ∃xP (x)→ ∀xP (x);
P0 = ⊥;
Ph+1 = δPh = qh ∨ (qh → Ph);
P+
0 = ⊥;
P+
h+1 = ∀x (Qh(x) ∨ (Qh(x)→ P+

h ));

Widn =
n∨
i=0

(pi →
∨
j 6=i
pj).

Thus, Ph is a propositional formula with proposition letters q0, . . . , qh−1, and
P+
h is a formula with monadic predicate letters Q0, . . . , Qh−1. We note that

both Ph and P+
h are deductively equivalent to positive formulas obtained by

replacing occurrences of ⊥ in them with fresh proposition letters. The following
is well known and easy to check:

Fact 2.2

(1) QH ` U ↔ U ′;

(2) QH + JE = QH + J ∧ E;

(3) QH + Z ` J .

Lemma 2.3 QH + CD + J ` E.

Proof It is not hard to see that

QH + J ` ∀x (¬P (x) ∨ ∃x¬¬P (x)).
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Hence,

QH + CD + J ` ∀x¬P (x) ∨ ∃x¬¬P (x).

Since QH ` ∀x¬P (x)↔ ¬∃xP (x), it follows that

QH + CD + J ` JE .

Thus, by Fact 2.2 (2), QH + CD + J ` E . 2

Corollary 2.4 QH + CD + Z ` E.

Proof Immediate from Lemma 2.3 and Fact 2.2 (3). 2

Remark 2.5 Without CD , the formula E is not derivable from either J or Z,
i.e., neither QH + J ` E nor QH + Z ` E ; see Lemma 5.20.

Lemma 2.6 QH + J + P2 ` Z; moreover, QH ` J ∧ P2 → Z.

Proof Observe that

(¬q ∨ ¬¬q) ∧ (p ∨ (p→ q∨¬q)) ⇒QH ¬q ∨ p ∨ (p→ q)
⇒QH (q → p) ∨ (p→ q).

2

2.4 Positive formulas and positively axiomatizable logics

An L-formula is positive if it does not contain occurrences of ⊥. The set of
positive formulas is denoted by L+. A logic L is positively axiomatizable if it
is axiomatizable over QH only by positive formulas; thus, positively axioma-
tizable logics are those representable as QH + Γ, with Γ ⊆ L+. The set of all
positively axiomatizable logics shall be denoted by Lpos.

Proposition 2.7 Lpos is a sublattice of L.

Proof Obviously, Lpos is closed under arbitrary (finite and infinite) logical
sums. We next show that it is closed under intersections. Let L1 and L2 be pos-
itively axiomatizable. Then, there exist Γ1,Γ2 ⊆ L+ such that Li = QH + Γi,
for i ∈ {1, 2}. By [4, Proposition 2.10.1 (1)],

L1 ∩ L2 = QH + {∀̄Am1 ∨ ∀̄Am2 : A1 ∈ Γ1, A2 ∈ Γ2, m > 0},

where ∀̄Am denotes the universal closure of an m-shift 1 of the formula A. Since
m-shifts of positive formulas are positive, it follows that L1 ∩ L2 is positively
axiomatizable. 2

Proposition 2.8 The lattice Lpos is complete.

1 An m-shift of a formula A is obtained from A by a substitution of a special form intended
to increase arities of predicate letters of A by m, using a fixed list of m fresh variables; for
details, see [4, Section 2.5].
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Proof As we have seen, Lpos is a sublattice of L with respect to arbitrary logi-
cal sums; hence, each family {Lθ : θ ∈ Θ} of elements of Lpos has a supremum,
its logical sum; therefore, it also has an infimum, which is the logical sum of
{L : L ⊆ Lθ, for all θ ∈ Θ}. 2

We do not know if the infimum of an infinite family of elements of Lpos
coincides with its intersection:

Problem 2.9 Is the lattice Lpos closed under arbitrary intersections?

We give some examples of logics that are not positively axiomatizable in
Subsection 5.4.

3 Positive slices

3.1 Convex sets in the lattice of logics

We say that a set S of the elements of the lattice L of logics is convex if

∀L1,L2 ∈ S ∀L0 ∈ L (L1 ⊆ L0 ⊆ L2 ⇒ L0 ∈ S).

We shall only be interested in non-empty convex subsets of L (the empty set
is trivially convex). Special types of convex subsets of L are segments and
intervals: if L1,L2 ∈ L and L1 ⊆ L2, then a segment in L is a set

[L1,L2] = {L : L1 ⊆ L ⊆ L2},

and an interval in L is a (possibly empty) set

(L1,L2) = {L : L1 ⊂ L ⊂ L2}.

Notice that for the interval (L1,L2) to be non-empty it is necessary, but not
sufficient, that L1 ⊂ L2.

It should be clear that a convex set is a segment if, and only if, it contains
a least and a greatest element. On the other hand, a set S of the elements of L
is convex if, and only if, S contains the segment [L1,L2] whenever L1,L2 ∈ S.

3.2 Systems of slices in the lattice of logics

A system (Sθ : θ ∈ Θ) of slices in L, where Θ is an index set, is a partition of L
into convex subsets, called the slices of the system. Thus, slices are non-empty,
mutually disjoint convex subsets of L whose union coincides with L. It is well
known that every such partition is induced by an equivalence on L.

Of course, not every system of slices is worth studying—either the slices
themselves or the corresponding equivalence relation should be meaningful and
interesting. In this paper, we consider one such example, a system of positive
slices.

3.3 Positive slices and partial ordering on positive slices

3.3.1 Positive fragments and positive slices

The positive fragment of a logic L is the set L+ = L ∩ L+ of its positive
formulas.

Lemma 3.1 If L is a logic, then L+ = (QH + L+)+.
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Proof Clearly, QH+L+ ⊆ L; hence, (QH+L+)+ ⊆ L+. On the other hand,
since L+ ⊆ QH+L+, it follows that L+ ⊆ (QH+L+)∩L+ = (QH+L+)+.2

We next introduce a preorder on logics with respect to the inclusion of their
positive fragments; we also introduce the equivalence induced by this preorder:
for every L1,L2 ∈ L, put

L1 6pos L2 
 L+
1 ⊆ L+

2 ;

L1 ≡pos L2 
 L1 6pos L2 and L2 6pos L1.

Thus, L1 ≡pos L2 means that L+
1 = L+

2 . We call the relation ≡pos the positive
equivalence on L and denote the equivalence class of a logic L under ≡pos

by [L]pos .
It should be clear that sets of the form [L]pos are convex subsets of L. Hence,

the relation ≡pos induces a system of slices on L, which we call the system of
positive slices on L and denote by L/≡pos; we call elements of L/≡pos positive
slices. The relation 6pos naturally induces a partial order 4pos on L/≡pos: if
S1,S2 ∈ L/≡pos, then

S1 4pos S2 
 L1 6pos L2 whenever L1 ∈ S1 and L2 ∈ S2.

The relation 4pos is well defined since whether L1 6pos L2 is independent of
the choice of L1 ∈ S1 and L2 ∈ S2.

3.3.2 Least logics of positive slices

It should be clear that every positive slice is closed under all (finite and infinite)
non-empty intersections, and hence contains a least logic. We next characterize
least logics of positive slices:

Proposition 3.2 For every logic L, the following conditions are equivalent:

(i) L is the least logic of a positive slice;

(ii) L ⊆ QH + L+;

(iii) L = QH + L+;

(iv) L is a positively axiomatizable logic.

Proof (i)⇒ (ii): Let L be the least logic of a positive slice S. By Lemma 3.1,
(QH + L+) ∈ S. Since L is the least in S, it follows that L ⊆ QH + L+.

(ii) ⇒ (iii): Since QH ⊆ L and L+ ⊆ L, surely QH + L+ ⊆ L.
(iii) ⇒ (iv): Immediate from the definition of positive axiomatizability.
(iv) ⇒ (i): Suppose that L = QH + Γ, for some Γ ⊆ L+. Then, Γ ⊆ L+.

Let L ≡pos L0, i.e., L+ = L+
0 . Then, Γ ⊆ L+

0 ⊆ L0. Hence, QH+ Γ ⊆ L0, i.e.,
L ⊆ L0. 2

Lemma 3.3 If logics L1 and L2 are positively axiomatizable, then the follow-
ing conditions are equivalent:

(i) L1 6pos L2;

(ii) L1 ⊆ L2.
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Proof (i)⇒ (ii): Let L1 6pos L2, i.e., L+
1 ⊆ L+

2 . Then, QH+L+
1 ⊆ QH+L+

2 .
By Proposition 3.2, L1 = QH + L+

1 and L2 = QH + L+
2 . Thus, L1 ⊆ L2.

(ii) ⇒ (i): If L1 ⊆ L2, then L+
1 ⊆ L+

2 , i.e., L1 6pos L2. 2

We denote the least logic of a positive slice S by LSpos . Proposition 3.2
immediately gives us the following:

Lemma 3.4 Let S be a positive slice. Then,

(1) LSpos = QH + L+, for every L ∈ S;

(2) LSpos is the unique positively axiomatizable logic in S.

Proposition 3.5 The system L/≡pos, partially ordered by 4pos , is a complete
lattice isomorphic to Lpos.

Proof By Lemma 3.4 (2), there exists a bijection f : S 7→ LSpos between L/≡pos
and Lpos. By definition of 4pos ,

S 4pos S ′ ⇐⇒ LSpos 6pos LS
′

pos .

Moreover, by Lemma 3.3,

LSpos 6pos LS
′

pos ⇐⇒ LSpos ⊆ LS
′

pos .

Hence, the lattices L/≡pos and Lpos are isomorphic. 2

Proposition 3.5 shall be relied on in a more detailed study of positive slices
that we hope to undertake in the near future.

3.3.3 Maximal logics of positive slices

The logical sum of a family of logics with the same positive fragment might itself
have a positive fragment larger than the positive fragment of the summands.
Hence, positive slices are not guaranteed to be closed under logical sums, and so
are not guaranteed to have largest logics. It should, however, be obvious that, if
C is a chain of logics with the same positive fragment, say P , then (

⋃
C)+ = P .

Hence, by Zorn’s lemma, every logic of a positive slice S is included in a logic
maximal in S. Thus, every positive slice S is bounded below by the least logic
LSpos and above by the antichain MSpos of its maximal logics. In other words,
every positive slice S is representable as follows:

{L : ∃L′ ∈MSpos (LSpos ⊆ L ⊆ L′)}.

If L0 ∈ L and A is an antichain of logics such that L0 ⊆ L whenever L ∈ A,
then we say that the set {L : ∃L′ ∈ A (L0 ⊆ L ⊆ L′)} is a tulip in L. Thus,
every positive slice S is a tulip contained between LSpos and MSpos .

Notice that segments are just tulips whose upper antichains are singletons.

4 Kripke semantics

In this section, we recall Kripke sheaf and Kripke frame semantics for super-
intuitionistic predicate logics and define some important logics characterized
using these types of semantics.
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4.1 Kripke sheaves and frames

A Kripke sheaf [4, Section 3.6] is a triple F = 〈W,D, ρ〉 where

• W is a non-empty poset with the partial order 6; elements of W are called
points, or worlds;

• D = {Du : u ∈W} is a system of non-empty domains;

• ρ = {ρuv : u 6 v} is a system of transition maps ρuv : Du → Dv, subject
to the following conditions:
· ρuu is the identity on Du, for all u ∈W ;
· ρuw = ρvw ◦ ρuv, for all u, v, w ∈W , i.e.,

∀u, v, w ∈W [u 6 v 6 w ⇒ ∀a ∈ Du ρuw(a) = ρvw(ρuv(a))].

We say that a Kripke sheaf F = 〈W,D, ρ〉 is a Kripke sheaf over the poset W .
If a = 〈a1, . . . , an〉 ∈ Dn

u , then ρuv(a) denotes the tuple 〈ρuv(a1), . . . , ρuv(an)〉.
A Kripke frame is a Kripke sheaf satisfying the following conditions:

• expanding domains condition: if u 6 v, then Du ⊆ Dv;

• the identity condition: if u 6 v and a ∈ Du, then ρuv(a) = a.

Since in frames transition maps are uniquely determined by the identity condi-
tion, to simplify notation, we omit the mention of transition maps when talking
about Kripke frames, presenting them simply as pairs 〈W,D〉. We say that a
Kripke frame has a constant domain if Du = Dv whenever u, v ∈ W . The
corresponding Kripke sheaves are obtained by requiring all maps ρuv to be
surjective; we are not aware of special category-theoretic terminology for such
Kripke sheaves; here we call them surjective.

A valuation on a sheaf F = 〈W,D, ρ〉 is a map ζ sending an n-ary predicate
letter P and a world u ∈W to a subset ζ(u, Pn) of Dn

u ; the map ζ is required
to satisfy the following heredity condition: for all u,w ∈W and a ∈ Dn

u ,

u 6 v & a ∈ ζ(u, Pn) =⇒ ρuv(a) ∈ ζ(v, Pn).

If F is a Kripke sheaf and ζ a valuation on F , then a tuple M = 〈F, ζ〉 is called
a Kripke sheaf model ; if, additionally, F is a Kripke frame, then M is called
simply a Kripke model. If u ∈W , then a Du-sentence is an expression obtained
from a formula B by substituting (constants corresponding to) elements of
Du for all occurrences of parameters in B. Note that sentences, i.e., formulas
without parameters, are justDu-sentences without any occurrences of constants
from Du. We occasionally write A(a1, . . . , an) to mean that A is a Du-sentence
containing no constants from Du beside a1, . . . , an.

Truth of a Du-sentence A(a), with a ∈ Dn
u , for some n, in a Kripke sheaf

model M at a point u is defined by recursion (the clauses for ⊥, ∨, and ∧ are
as in propositional logic):

• M,u  P (a) if a ∈ ζ(u, P );

• M,u  (A1 → A2)(a) if
∀u′ > u [M,u′  A1(ρuu′(a))⇒M,u′  A2(ρuu′(a))];
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• M,u  (∃xA1)(a) if ∃b ∈ Du [M,u  A1(b,a)];

• M,u  (∀xA1)(a) if ∀u′ > u∀b ∈ Du′ [M,u′  A1(b, ρuu′(a))].

We say that a formula A is

• true at a point u of a model M , and write M,u  A, if the Du-sentence
∀̄A is true in M at u;

• valid on a Kripke sheaf F , and write F  A, if M,u  A holds for every
point u of F and every model M over F ;

• valid on a class of Kripke sheaves if it is valid on every sheaf from the
class.

The set of formulas valid on a class F of Kripke sheaves is denoted by LF ;
if F = {F}, we write LF instead of L{F}. It is well known that, if F is a
Kripke sheaf, then LF is a logic, called the logic of F . Consequently, if F is
a class of Kripke sheaves, then LF =

⋂
{LF : F ∈ F} is a logic, called the

logic of F . Logics representable as LF , for some class F of Kripke sheaves,
are called Kripke sheaf complete. Logics representable as LF , for some class F
of Kripke frames, are called Kripke complete.

It is well known [4, Lemma 3.6.20] that the logic of all Kripke sheaves over
a classW of posets coincides with the logic of all Kripke frames overW; hence,
we denote this logic by LW. The same is true for constant domains: the logic
of all surjective Kripke sheaves over a classW of posets coincides with the logic
of all Kripke frames with constant domains overW; hence, we denote this logic
by LcW.

4.2 Subsheaves and rooted sheaves

If W is a poset with a partial order 6 and w0 ∈ W , then a poset gener-
ated by w0, denoted by W↑w0, is a substructure of W with the set of points
{w ∈ W : w0 6 w}. If F = 〈W,D, ρ〉 is a Kripke sheaf and w0 ∈ W , then
the subsheaf of F generated by w0 is the Kripke sheaf F↑w0 = 〈W↑w0, D

′, ρ′〉
where D′ and ρ′ are restrictions to W↑w0 of, respectively, D and ρ. A world
w0 ∈W is a root of F if F↑w0 = F . A sheaf is rooted if it has a root.

In Section 5.3, we use the following fact [4, Lemma 1.16.3] about formulas
of the form δA (see Section 2.2):

Proposition 4.1 Let F = 〈W,R,D〉 be a Kripke sheaf with root w0. Then,

F  δA ⇐⇒ ∀w ∈W \ {w0} F↑w  A.

4.3 Some families of posets and their logics

For the purposes of this paper, the following classes of posets shall be of interest:

• Wpo, the class of all posets;

• Wg, the class of all posets with a greatest element;

• HEIh, where h < ω, the class of posets of height at most h;

• WIDn, where n < ω, the class of posets of width at most n;
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• HEIω =
⋃
{HEIh : h < ω}, the class of posets of finite height;

• WIDω =
⋃
{WIDn : n < ω}, the class of posets of finite width;

• CHh = WID1 ∩ HEIh, where h < ω, the class of chains of height at
most h;

• CHω =
⋃
{Ch : h < ω} =WID1 ∩HEIω, the class of all finite chains;

• FIN = HEIω ∩WIDω, the class of all finite posets.

It should be clear that

LHEIω =
⋂
h<ω

LHEIh; LcHEIω =
⋂
h<ω

LcHEIh;

LWIDω =
⋂
n<ω

LWIDn; LcWIDω =
⋂
n<ω

LcWIDn.

We next recall known facts about logics of these classes of posets and about
some closely related logics:

(4.1) As shown in [8],
LWpo = QH;
LcWpo = QH + CD .

(4.2) By [3, Theorems 5.8 and 5.12],

LWg = QH +K + J ;
LcWg = QH +K + J + CD .

(4.3) As shown in [26],
LHEIh = QH + P+

h .

(4.4) Even though formulas Ph are propositionally complete (H + Ph is
the propositional logic of HEIh), if h > 1, then the logic QH + Ph
is Kripke, and hence Kripke sheaf, incomplete: H. Ono proved that
QH+Ph 6` K whenever h > 1; on the other hand, for every such h, the
class HEIh validates K. The logic QH + P1 is Kripke complete since
QH + P1 = LHEI1 = QC (here, QC is the classical predicate logic).

(4.5) As follows from [10, Theorem 11],

LcHEIh = QH + Ph ∧ CD = QH + P+
h ∧ CD .

(4.6) As follows from [14, Theorem 3.9], for every n < ω,

LcWIDn = QH + Widn ∧ CD .

(4.7) As shown in [2,17],

LWID1 = LQ = LR = QH + Z.

(4.8) As shown in [21],

LcWID1 = LcQ = QH + Z ∧ CD .
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(4.9) As shown in [2, p. 334],

L(WID1 ∩Wg) = QH +K + Z;
Lc(WID1 ∩Wg) = QH +K + Z + CD .

(4.10) LcR is a finitely axiomatizable proper extension of LcQ [21].

(4.11) LHEIω and LcHEIω are Π0
1-hard [15, Corollary 1.2] and hence not

recursively axiomatizable.

(4.12) As shown in [10], LCHh = QH + P+
h + Z; on the other hand, if h > 1,

then QH + Ph + Z is Kripke sheaf incomplete.

(4.13) LcCHh = QH + P+
h + Z + CD = QH + Ph + Z + CD .

(4.14) As shown in [15], LCHω and LcCHω are both Π0
1-hard and are both

in Π0
2.

(4.15) LFIN and LcFIN are both Π0
1-hard [15, Corollary 2.1] and are both

in Π0
2.

Remark 4.2 It is not known whether logics WIDn, with n > 1, are recur-
sively axiomatizable; we conjecture that the answer is negative; if our conjecture
is true, then logics QH+Widn are Kripke incomplete, i.e., are proper sublogics
of LWIDn. 2

5 Main results

In this section, we present our results on positive slices obtained so far.

5.1 A continuum of degenerate positive slices

5.1.1 Degenerate slices

We say that a positive slice S is degenerate if it is a singleton. By Proposi-
tion 3.2, every degenerate slice S has the form {LSpos}. Moreover, the following
is true:

Lemma 5.1 A slice of a logic L is degenerate if, and only if, the following
conditions simultaneously hold:

(1) L is a positively axiomatizable logic;

(2) for every logic L0, if L ⊂ L0, then L+ ⊂ L+
0 .

Proof Suppose that (1) and (2) hold, and let S be the positive slice of L.
By (1) and Proposition 3.2, L is the least logic of S. Due to (2), L is also a
maximal logic of S. Hence, S = {L}.

Conversely, suppose that S is a positive slice such that S = {L}. Then, L
is the least logic of S; hence, by Proposition 3.2, L is positively axiomatizable,
i.e., (1) holds. Since S contains no logics beside L, no logic other than L has
the same positive fragment as L; hence, (2) holds, as well. 2

2 The third author had established Kripke incompleteness of QH + Wid2 ∧ P3; he believes
that the Kripke completion of this logic is not recursively enumerable; however, a proof, as
well as a proof of incompleteness for n > 2 and h > 3, is likely to be quite complicated.
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We say that a logic L is hereditarily positively axiomatizable if both L and
all its proper extensions are positively axiomatizable.

Corollary 5.2 The slice of a hereditarily positively axiomatizable logic is de-
generate.

Proof Let L be a hereditarily positively axiomatizable logic. Due to
Lemma 5.1, it suffices to show that L ⊂ L0 implies L+ ⊂ L+

0 , for every L0.
Suppose that L ⊂ L0. Then, L+ ⊆ L+

0 and L0 is positively axiomatizable.
Suppose, for contradiction, that L+ = L+

0 . Since L and L0 are positively axiom-
atizable, it follows, by Proposition 3.2, that L = QH+L+ and L0 = QH+L+

0 ,
and so L = L0, contrary to the assumption. Hence, L+ ⊂ L+

0 . 2

5.1.2 Superclassical logics

We shall consider the lattice LQC = {L ∈ L : QC ⊆ L} of superclassical
logics, i.e., superintuitionistic predicate logics extending the classical predicate
logic QC. We begin with the following decreasing chain of all Kripke complete
extensions of QC (notice that all these logics are, indeed, superintuitionistic
predicate logics):

• QCm, where 0 < m < ω, is the logic of Kripke frames over singleton posets
with m-element domains; thus, QCm is the set of formulas classically valid
over m-element domains;

• QCω =
∞⋂
m=1

QCm is the logic of Kripke frames over singleton posets with

finite domains; thus, QCω is the set of formulas classically valid over finite
domains;

• QC0 is the inconsistent logic L. 3

It is well known that both QC0 and QC are finitely positively axiomatizable
over QH by, respectively, p and Pierce’s law ((p→ q)→ p)→ p. By Trakhten-
brot’s theorem [22], QCω is Π0

1-complete, and so is not finitely axiomatizable.
The lattice LQC includes the infinite segment [QC,QCω] of logics between

QC and QCω. The following is known [18, Section 0.6]:

Fact 5.3 The lattice LQCω
= {L ∈ L : QCω ⊆ L} of all extensions of QCω

is just the decreasing (ω + 1)-chain {QCm : 0 6 m 6 ω}.
Fact 5.4 The lattice LQC is just LQCω

∪ [QC,QCω]; in other words, LQC

does not contain logics incomparable with QCω.

Wajsberg [23] had shown that the cardinality of the lattice LQC, and hence
of the segment [QC,QCω], is continuum.

3 By analogy with the case when m > 0, one might think of QC0 as the logic of Kripke
frames that are singleton posets with 0-element domains: such Kripke frames do not exist,
hence QC0 is the logic of the empty class of Kripke frames.
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5.1.3 A continuum of logics with degenerate slices

To obtain a continuum of logics with degenerate slices, we show that the clas-
sical predicate logic QC is hereditarily positively axiomatizable:

Proposition 5.5 Every superclassical logic is positively axiomatizable.

Proof For every formula A, we choose a nullary letter q not in A and define
positive formulas A′ and A′′ as follows:

A′ = [q/⊥]A, A′′ = (q → A′)→ A′.

We shall prove that A and A′′ are deductively equivalent in QC.
We start by proving that

QH ` (q ∨ ¬q) ∧A→ A′′. (5.1)

We use reasoning by cases. Case q: It should be clear that QH ` q → A′′;
hence, QH ` q ∧ A → A′′. Case ¬q: Since QH ` ¬q → (⊥ ↔ q),
it follows, by induction on A, using the equivalence replacement rule, that
QH ` ¬q → (A ↔ A′). Since QH ` A′ → ((q → A′) → A′), we obtain
QH ` ¬q → (A→ A′′). This proves (5.1).

Now, as QC ` q ∨ ¬q, it follows, by (5.1), that

QC ` A→ A′′. (5.2)

Second, we show that
QH +A′′ ` A. (5.3)

Substituting ⊥ for q in A′′, we obtain (⊥ → A)→ A. Since the latter formula
is equivalent in QH to A, this gives us (5.3).

Thus, A and A′′ are deductively equivalent in QC, i.e.

QC +A = QC +A′′. (5.4)

Now, let L be a superclassical logic. By (5.4), L +A = L +A′′, and so

L = QH + L = QH + {A′′ : A ∈ L}. (5.5)

Since formulas of the form A′′ are positive, (5.5) immediately implies the state-
ment of the proposition. 4 2

The proof of Proposition 5.5 also gives us the following:

Corollary 5.6

(1) A superclassical logic is finitely positively axiomatizable if, and only if, it
is finitely axiomatizable.

(2) A superclassical logic is recursively positively axiomatizable if, and only if,
it is recursively axiomatizable.

Since extensions of a superclassical logic are themselves superclassical,
Proposition 5.5 immediately gives us the following:

4 Clearly, in (5.5), i.e., in a positive axiomatization of L, it suffices to use only closed formulas
from L.
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Proposition 5.7 Every superclassical logic is hereditarily positively axiomati-
zable.

Finally, by Proposition 5.7 and Corollary 5.2, we obtain the following:

Proposition 5.8 The positive slice of every superclassical logic is degenerate.

5.1.4 Finite positive axiomatizations of QCm

We conclude this section by presenting explicit finite positive axiomatizations
for superclassical logics of finite domains, i.e., of logics QCm, with 0 < m < ω.
We rely on the following fact, first observed by Skvortsov [18, Section 0.6]:

Fact 5.9 For every predicate formula A,

QC +A = QCm ⇐⇒ A ∈ QCm \QCm+1.

Now, for every m with 0 < m < ω, we define the formula

DOM ∗
m =

m∧
i=0

∃xPi(x)→
∨
i 6=j

∃x (Pi(x) ∧ Pj(x)).

It is not hard to see that DOM ∗
m ∈ QCm\QCm+1, i.e., DOM ∗

m is classically
valid on domains with m elements, but not on domains with m + 1 elements.
This observation, together with Fact 5.9, immediately gives us the following: 5

Proposition 5.10 QC + DOM ∗
m = QCm.

5.2 Non-degenerate slices: main theorem and its corollaries

In this section, we show that positive slices of many well-known Kripke complete
and Kripke sheaf complete logics are non-degenerate.

Define the g-extension of a poset W , denoted by W g, to be the poset
obtained by adding to W the greatest element; by default, the greatest element
of a poset will be denoted by g.

Define the g-extension of a Kripke frame F = 〈W,D〉 by letting

• Dg
u = Du, for every u ∈W ;

• Dg
g =

⋃
{Du : u ∈ W} (thus, the domain of the greatest point g is the

union of all domains from F );

• F g = 〈W g, Dg〉.
Similarly, define the g◦-extension of a Kripke sheaf F = 〈W,D, ρ〉 by letting

• D◦u = Du, for every u ∈W ;

• D◦g to be a singleton domain {t};
• ρ◦ug(a) = t, for every u ∈W and a ∈ Du (thus, t is a common inheritor of

all individuals from F );

• F ◦ = (W g, D◦, ρ◦).

5 Axioms DOM ∗
m seem to be both simple and natural; we are not, however, aware of their

use in the literature.
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We note that Kripke sheaf semantics, unlike Kripke frame semantics, allows us
to glue together all the individuals of the greatest world, resulting in a compact,
convenient, and effective construction.

If F is a class of Kripke frames, we define Fg = {F g : F ∈ F}. We say
that a class F of Kripke frames is g-closed if Fg ⊆ F . Similarly, if F is a class
of Kripke sheaves, we define F◦ = {F ◦ : F ∈ F}. We say that a class F of
Kripke sheaves is g◦-closed if F◦ ⊆ F .

We now obtain a sufficient condition for inclusion of positive fragments of
Kripke complete and Kripke sheaf complete logics:

Lemma 5.11 (Main lemma)

(1) If F is a class of Kripke frames, then (LFg)+ ⊆ (LF)+, i.e.,
LFg 6pos LF .

(2) If F is a class of Kripke sheaves, then (LF◦)+ ⊆ (LF)+, i.e.,
LF◦ 6pos LF .

Proof (1): Let A be a positive formula not in (LF)+ (we may assume that
A is closed). Then, there exists a Kripke model M = 〈F, ζ〉 over a Kripke
frame F = 〈W,D〉 from F and a world u0 ∈ W such that M,u0 6 A. Expand
the valuation ζ to the valuation ζg over the Kripke frame F g as follows: let
ζg � W = ζ and, for every n-ary predicate letter P , let ζg(g, P ) be the set of
all n-tuples of elements from Dg

g . Then, all atoms are true at g in Mg. Put
Mg = 〈F g, ζg〉. It should be clear that Mg satisfies the heredity condition;
hence, Mg is a Kripke model. A straightforward induction on Dg

g -sentences
shows that

Mg, g  B, for every positive Dg
g -sentence B. (5.6)

Now, straightforward induction, using (5.6), shows that, for every u ∈ W and
every positive Du-sentence B,

M,u  B ⇐⇒ Mg, u  B;

in other words, the values of positive Du-sentences are preserved at all non-
greatest worlds of Mg. Hence, Mg, u0 6 A, and so A /∈ (LFg)+.

(2): The argument here is similar. We define a Kripke sheaf model over a
Kripke sheaf F ◦ analogously to the definition of the Kripke model Mg from the
proof of (1). Since the definition of Mg from (1) did not require to distinguish
values of atoms on different individuals from the domain of world g, gluing
these individuals together does not affect the truth of formulas: thus, we make
all atoms true on the unique individual of the domain of g. The remainder of
the argument is essentially identical. 2

We next obtain a sufficient condition for the equality of positive fragments
of Kripke complete and Kripke sheaf complete logics (this will give us examples
of extensive non-degenerate positive slices):



Rybakov, Shkatov, Skvortsov 17

Theorem 5.12 (Main theorem)

(1) If F is a g-closed class of Kripke frames, then LF ≡pos LFg.

(2) If F is a g◦-closed class of Kripke sheaves, then LF ≡pos LF◦.

Proof (1) Since F is g-closed, Fg ⊆ F . Hence LF ⊆ LFg, and so
(LF)+ ⊆ (LFg)+, i.e., LF 6pos LFg. The converse follows by Lemma 5.11.

(2) The argument here is similar to (1). 2

Corollary 5.13

(1) LWg 6pos LW and LcWg 6pos LcW, for every class W of posets.

(2) LWg ≡pos LW and LcWg ≡pos LcW, for every g-closed classW of posets.

Proof Immediate from Lemma 5.11 and Theorem 5.12. 2

We next apply Main Theorem to some well-known logics.

Proposition 5.14

(1) QH ≡pos QH + J +K;

(2) QH + CD ≡pos QH + CD + J +K;

(3) QH + Z ≡pos QH + Z +K;

(4) QH + CD + Z ≡pos QH + CD + Z +K.

Proof We use facts from Section 4.3.
(1): Since the class Wpo of all posets is g-closed, it follows, by

Corollary 5.13 (2), that LWpo ≡pos LWg
po . By (4.1), LWpo = QH. Since

Wg
po =Wg , it follows that LWg

po ` J ∧K. Hence, QH ≡pos QH + J +K.
(2)–(4): The argumentation here is similar; use (4.1), (4.7), and (4.8). 2

The scope of Proposition 5.14 will become clearer if the reader consults
Fact 2.2 (3), Lemma 2.3, and Remark 2.5.

Due to (4.2), and (4.9), the results of Proposition 5.14 are the maximal
ones that Theorem 5.12 (1) enables us to obtain. However, using Kripke sheaf
semantics, we shall next obtain stronger (see Remark 5.21) results.

Lemma 5.15 Let F be a Kripke sheaf. Then, F ◦  J ∧ ¬¬U .

Proof First, F ◦  J since F ◦ is a sheaf over a poset with the greatest ele-
ment g. Second, F ◦  ¬¬U since the domain of g is a singleton and hence
F ◦ ↑ g  U . 2

Proposition 5.16 Let C be one of the following classes of posets: Wpo,
WIDn, for some n such that 1 < n < ω, WIDω, HEIω, and FIN ; let
also L ∈ {LC,LcC}. Then, L ≡pos L + J + ¬¬U .

Proof By Lemma 5.15, formulas J and ¬¬U are valid on every Kripke sheaf
of the form F ◦. Every class of posets mentioned in the proposition is g-closed;
thus, the corresponding classes of Kripke sheaves and of surjective Kripke
sheaves are g◦-closed. Hence, the statement follows by Theorem 5.12 (2). 2
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Proposition 5.17 If L ∈ {QH + Z,QH + Z + CD}, then L ≡pos L + ¬¬U .

Proof Similar to the proof of Proposition 5.16 (recall that, by Fact 2.2 (3),
QH + Z ` J). 2

Remark 5.18 Proposition 5.17 can be transferred to the logics of the class
CHω of all finite chains.

Remark 5.19 Notice that ¬¬U ′, which, by Fact 2.2 (1), is equivalent in QH
to ¬¬U , implies both K and E: namely, in the presence of ¬¬U ′, i.e., in the
logic L = QH + ¬¬U = QH + ¬¬U ′, we obtain

∀x¬¬P (x) ⇒L ∃x¬¬P (x) ⇒L ¬¬∃xP (x) ⇒L ¬¬∀xP (x)

and

¬¬∃xP (x) ⇒L ¬¬∀xP (x) ⇒L ∀x¬¬P (x) ⇒L ∃x¬¬P (x).

We next show that Propositions 5.16 and 5.17 are stronger than Proposi-
tion 5.14. To that end, we need the following lemma:

Lemma 5.20 QH + Z + P+
2 6` E.

Proof Recall from Section 4.3 that formulas Z and P+
2 are valid, respec-

tively, on chains and on posets of height at most 2. Define a Kripke model
M = 〈W,D, ζ〉 so that W = {u, v} is a two-element poset where u < v,
D(u) = {a}, D(v) = {a, b}, ζ(u, P ) = ∅, and ζ(v, P ) = {b}. Since W is a
chain of height 2, surely 〈W,D〉  {J, P+

2 }. On the other hand, it is straight-
forward to check that M,u 6 E . 2

Remark 5.21 To compare Propositions 5.16 and 5.14, observe that, since
QH + ¬¬U ` E, Proposition 5.16 implies that

QH ≡pos QH + E. (5.7)

On the other hand, Proposition 5.14 implies that QH ≡pos L only if
L ⊆ QH + J + K; this statement is weaker than (5.7) since, as we next
show, E does not belong to the latter logic: indeed, since QH + Z ` J and
QH + P+

2 ` K, it follows, by Lemma 5.20, that QH + J +K 6` E .
Similar observations about logics with the axiom Z apply to Proposi-

tions 5.17 and 5.14.

Proposition 5.22 LcR ≡pos LcR+ ¬¬U .

Proof We show that LcR+ ¬¬U 6pos LcR, i.e., that

(LcR+ ¬¬U)+ ⊆ (LcR)+. (5.8)

Denote by F and F∗ the classes of surjective Kripke sheaves over, respec-
tively, R and Rg, ordered by the usual 6 relation. Then, LF = LcR and
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LF∗ = LcR
g. Takano proved [21, Theorem (2◦) and Proposition 5.1 (2◦)] that

LcR
g = LcR+K. 6 Hence, LcR ⊆ LcR

g. 7

Now, let F◦ = {F ◦ : F ∈ F}. Since every sheaf of the form F ◦, with
F ∈ F , is obviously surjective, surely F◦ ⊆ F∗. Hence, LF∗ ⊆ LF◦, and so

LcR ⊆ LcR
g = LF∗ ⊆ LF◦.

By Lemma 5.15, ¬¬U ∈ LF◦. Hence,

LcR+ ¬¬U ⊆ LF◦. (5.9)

By Lemma 5.11 (2), (LF◦)+ ⊆ (LF)+, i.e.

(LF◦)+ ⊆ (LcR)+. (5.10)

Lastly, (5.9) and (5.10) immediately imply (5.8). 2

We note that Proposition 5.22 can be obtained from Main Theorem since
the g-closure of R validates Takano’s axioms for LcR [21, Proposition 5.2];
we, however, believe that our proof of Proposition 5.22 is simpler and more
immediate than an appeal to Main Theorem.

5.3 Some restrictions on the application of the main theorem

In this section, we give examples of some interesting classes of posets to which
Theorem 5.12 does not apply; the study of their positive fragments shall require
techniques that differ from those used here.

Since no class HEIh, where h < ω, is g-closed, the following is not unex-
pected (recall from (4.3), (4.4), and (4.5) that QH+Ph ⊂ QH+P+

h = LHEIh
and QH+CD+Ph = QH+CD+P+

h = LcHEIh, for every h with 1 < h < ω):

Proposition 5.23 Let L be one of the logics QH + Ph, QH + P+
h , or

QH + CD + Ph, where 1 < h < ω. Then, L 6≡pos L + J .

Proof We first consider the case when h = 2. Denote byW3 a rooted 3-element
poset with two maximal elements (‘fork’); this is a tree of height 2. It should
be clear that LcHEI2 ⊆ LcW3, but W3 6 Z; hence, LcHEI2 6` Z. On the
other hand, by Lemma 2.6, QH+ J + P2 ` Z. Hence, Z ∈ (L+ J) \L, and so
L 6≡pos L + J , for every logic L from the segment [QH + P2,LcHEI2].

The case when h > 2 is similar, using the δ-operation on formulas (see Sec-
tion 2.2). Recall that that Ph = δh−2P2. Due to Lemma 2.6, QH+J ` P2 → Z.
Hence, by Fact 2.1 (2), QH+J ` δh−2P2 → δh−2Z, i.e., QH+J ` Ph → δh−2Z.
On the other hand, since, as we have seen, LcHEI2 6` Z, it follows, by Propo-
sition 4.1, that LcHEIh 6` δh−2Z. Therefore, δh−2Z ∈ (L + J) \ L, and so
L 6≡pos (L + J), for every logic L from the segment [QH + Ph,LcHEIh]. 2

6 Even though Takano characterized these logics using Kripke frames, the same logics can,
as we have seen at the end of Section 4.1, be characterized using surjective Kripke sheaves.
7 By the way, this inclusion, besides Takano’s completeness results, also follows from the
existence of a p-morphism of R onto Rg ; for information on p-morphisms of Kripke frames,
consult [4, Section 3.3].
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Remark 5.24 Due to Lemma 2.6, QH ` J ∧ P2 → Z. Hence, by Fact 2.1 (2)
and Fact 2.1 (3), QH ` δh−2J ∧ δh−2P2 → δh−2Z, for every h > 2.

Hence, if h > 2, then, for every logic L from Proposition 5.23 parameterized
by the said h,

L 6≡pos (L + δh−2J).

We note that, by Fact 2.1 (1), L + δh−2J ⊂ L + J , for such logics L.

Proposition 5.25 Let L be one of the following logics:

• an extension of QH + P2 not containing Z;

• QH+Ph+Widn and QH+P+
h +Widn, with 1 < h < ω and 1 < n < ω;

• QH + CD + Ph +Widn (i.e., QH + CD + P+
h +Widn), with 1 < h < ω

and 1 < n < ω.

Then L 6≡pos L + J .

Proof Similar to the proof of Proposition 5.23. 2

Remark 5.26 Observe that logics mentioned in the first item of Proposi-
tion 5.25 include the logics QH+P+

2 + Widn of n-branching trees of height 2,
as well as Kripke incomplete logics QH + P2 + Widn, with 1 < n < ω. The
logics of constant domains QH+CD +P2+Widn (i.e., QH+CD +P+

2 +Widn)
are included, as well.

5.4 On logics that are not positively axiomatizable

Our results have immediate corollaries concerning lack of positive axiomatiz-
ability for classes of logics. We give only one example (it is not hard to extend
it to similar cases):

Proposition 5.27 Neither QH + J , nor any logic in the interval
(QH,QH + J) is positively axiomatizable.

Proof Immediate from Proposition 3.2 and Proposition 5.14 (1). 2

We next give an example independent from Proposition 3.2 (once again, it
is not hard to produce similar examples). Recall that we denote by W3 a 3-
element rooted poset with two maximal elements (‘fork’); we also denote by W4

a 4-element poset where a root sees a two-element anti-chain whose elements
see the greatest element (‘rhombus’).

Proposition 5.28 No logic in the segment [LW4,LcW4] is positively axioma-
tizable.

Proof Clearly, W4 = W g
3 . Hence, by Corollary 5.13 (1), LcW4 6pos LcW3,

i.e., (LcW4)+ ⊆ (LcW3)+. On the other hand, J ∈ LcW4 \ LcW3. Hence, if
L ∈ [LW4,LcW4], then J ∈ L\ (QH+L+), which implies the statement of the
proposition. 2

We do not know how to explicitly axiomatize the least logic in the pos-
itive slice of LW4. Logics LW3 and LcW3, as well as logics mentioned in
Remark 5.26, are positively axiomatizable.
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Remark 5.29 It is well known that propositional extensions of the logic H+Z,
i.e., propositional logics of (finite) chains, as well as propositional extensions of
H+P2, i.e., propositional logics of (finite) trees of height at most 2 (and so, in
particular, proper extensions of the propositional logic of W4, i.e., the logic of
rhombus), are all finitely positively axiomatizable. It remains unknown if the
analogous facts hold for predicate logics.

Problem 5.30 Are QH + CD + Z (the logic of all chains with constant do-
mains) and QH + CD + P+

2 (the logic of all trees of height at most 2 with
constant domains) hereditarily positively axiomatizable?

Note that the class of extensions of QH + CD + Z includes the infinite
family of the predicate logics of ordinals. The constant domain logics of ordinals
have been studied by Minari, Takano, and Ono [9]. It is known [15] that all
these logics except logics of finite chains, as well as their expanding domains
counterparts, are Π1

1-hard, and so are not arithmetical.

6 Directions for future work

The present paper is but a first sketch of the study of the system of positive
slices in the lattice of superintuitionistic predicate logics.

As already mentioned, our Main Theorem generalises an observation made
by Yankov [25] about superintuitionistic propositional logics. In fact, Yankov
proved that the propositional logic H+J of the weak law of the excluded middle
is the greatest propositional logic whose positive fragment coincides with that
of the intuitionistic propositional logic H (i.e., in our terminology, the positive
slice of H is the segment [H,H + J ]). Our Main Theorem does not imply an
analogous statement for predicate logics. Moreover, we do not know if any of
the non-degenerate positive slices of predicate logics are segments. These are
questions for future study.
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