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Predicate modal logics

We consider logics in the language with ⊥, →, ∀, and 2 that are
extensions of the classical predicate logic QCL.

A precicate modal logic is a set of formulas containing QCL and the
minimal normal propositional modal logic K, and closed under
Substitution, Modus Ponens, Generalization, and Necessitation.

The minimal precicate modal logic is QK.

If Γ and ∆ are sets of formulas, then Γ +∆ denotes the closure of
Γ ∪∆ under Substitution, Modus Ponens, Generalization, and
Necessitation.

If Λ is a propositional modal logic, then QΛ := QK+ Λ.
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Kripke semantics with expanding domains

Definition

A predicate frame is a tuple F = (W,R,D), where (W,R) is a
Kripke frame and D = {Du | u ∈W} is a family of non-empty
domains satisfying the expaning domains condition:

wRv =⇒ Dw ⊆ Dv.

Definition

A Krike model is a tuple (F, I), where F is a predicate frame and I
is an interpretation function: Iw(P ) ⊆ Dn

w, for every w ∈W and
every n-ary predicate symbol P .
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Truth relation in Kripke models

A Dw-sentence is an expression obtained from a formula by replacing
free variables with copies of elements of Dw.

The truth relation |= between models M , worlds w, and Dw-sentences
φ is defined by recursion:

• M,w |= P (a1, . . . , an) if (a1, . . . , an) ∈ Iw(P );

• M,w |= ¬φ if M,w ̸|= φ;

• M,w |= φ ∧ ψ if M,w |= φ and M,w |= ψ;

• M,w |= ∀xφ(x) if M,w |= φ(a) whenever a ∈ Dw;

• M,w |= □φ if M, v |= φ whenever v ∈ R(w).

A formula is true in a model if its universal closure is true at every
world. A formula is valid on a predicate frame F if it is true in every
model over F . A formula is valid on a Kripke frame F if it is valid on
every predicate frame over F .

The set of formulas valid on all Kripke frames coincides with QK.
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Kripke completeness

A predicate modal logic L is Kripke complete if it coincides with the
set of validities on a class of predicate frames, i.e., for every φ /∈ L,
there exists a predicate frame F such that F |= L, but F ̸|= φ.

A formula φ follows from a set Γ of formulas in Kripke semantics
(notation: Γ |= φ) if, for every predicate frame F ,

F |= Γ =⇒ F |= φ.
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Logics considered in this talk

Let n ⩾ 1. Define

altn := ¬
∧

0⩽i⩽n

3(Pi ∧
∧
j ̸=i

¬Pj);

ref := □P → P ;

4 := □P → □□P.

It is well known that a Kripke frame F = (W,R) validates altn iff
|R(w)| ⩽ n whenever w ∈W .

Define
QAltn := QK+ altn;

QTAltn := QAltn + ref ;

QK4Altn := QAltn + 4;

QS4Altn := QK4Altn + ref .

Proposition

Let n ⩾ 1. Then, QAltn, QTAltn, QK4Altn, and QS4Altn are not
canonical, even though the corresponding propositional logics are.
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Strong Kripke completeness of QAltn and QTAltn

Even though QAltn and QTAltn are not canonical, we have the
following:

Theorem

Logics QAltn and QTAltn are strongly Kripke complete.

The outline of the proof is presented in the abstract. In a nutshell,
given an L-consistent (L ∈ {QAltn,QTAltn}) theory Γ0, we select a
submodel M = (W,R,D, I) of the canonical model ML containing
theory including Γ0 and based on a predicate frame validating L in
such a way that

Γ ∈W & 3φ ∈ Γ =⇒ ∃∆ ∈ R(Γ)
(
φ ∈ ∆

)
.
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Kripke incompleteness of QK4Altn and QS4Altn

On the other hand, QK4Altn and QS4Altn are Kripke incomplete.

We show that, we use the semantics of Kripke bundles.
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Kripke bundles

Definition

A Kripke bundle is a tuple F = (W,R,D, ρ), where (W,R) is a
Kripke frame, D = {Du | u ∈W} is a family of non-empty disjoint
domains, and ρ = {ρuv | (u, v) ∈ R} is a family of inheritance
relations ρuv ⊆ Du ×Dv satisfying the constraint that ρuv(a) ̸= ∅
whenever uRv and a ∈ Du (i.e., every individual has at least one
inheritor in each accessible world).

Definition

A Krike bundle model is a tuple (F, I), where F is a Kripke bundle
and I is an interpretation, defined as for Kripke models, i.e.,
Iw(P ) ⊆ Dn

w, for every w ∈W and every n-ary predicate symbol P .
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Truth relation in bundles

The truth relation ⊩ between models M , worlds w, and Dw-sentences
φ is defined by recursion:

• M,w ⊩ P (a1, . . . , an) if (a1, . . . , an) ∈ Iw(P );

• M,w ⊩ ¬φ if M,w ̸⊩ φ;

• M,w ⊩ φ ∧ ψ if M,w ⊩ φ and M,w ⊩ ψ;

• M,w ⊩ ∀xφ(x) if M,w ⊩ φ(a) whenever a ∈ Du;

• M,w ⊩ □φ(a1, . . . , an), with distinct a1, . . . , an ∈ Du if

∀v ∈ R(w)∀b1 ∈ ρuv(a1) . . . ∀bn ∈ ρuv(an)M,v ⊩ φ(b1, . . . , bn).

NB If a occurs in □φ several times, then determining whether
M,w |= □φ involves substituting the same inheritor for every
occurrence of a in □φ.
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Truth and validity

A formula is true in a Kripke bundle model if its universal closure is
true at every world of the model. A formula φ is strongly valid in a
Kripke bundle F (notation: F ⊩ φ) if every substitution instance of φ
is true in every model over F.

Proposition

Let F be a Kripke bundle. Then the set {φ | F ⊩ φ} is a predicate
modal logic.
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Validating a propositional logic

Definition

With a Kripke bundle F = (W,R,D, ρ), we associate a family
{(Wk, Rk) | k < ω} of Kripke frames, in the following way. Define

• W0 :=W and R0 := R;

• W1 :=
⋃
{Dw | w ∈W};

• R1 :=
⋃
{ρuv | (u, v) ∈ R};

• for every k > 1,

Wk :=
⋃

{Dk
w | w ∈W};

Rk := {(a,b) ∈ Dk ×Dk | ∀i aiR1bi & ∀i, j (ai = aj ⇒ bi = bj)}.

Proposition

Let F be a Kripke bundle and φ be a propositional modal formula.
Then F ⊩ φ iff Fk |= φ, for every k < ω.
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Kripke incompleteness of QK4Altn

Theorem

For every n ⩾ 1, the logic QK4Altn is Kripke incomplete.

Proof.
Let n ⩾ 1 and L = QK4Altn. Consider the formula

An := 3n+1⊤ → 3 ∀x (□P (x) → P (x)).

We show that (1) L |= An, but (2) An /∈ L.

(1) Suppose that F = (W,R,D) and F |= L. Then, R is transitive
and |R(w)| ⩽ n whenever w ∈W . Assume F , w0 |= 3n+1⊤. Then,
there exist w1, . . . , wn+1 ∈W such that w0Rw1 . . . wnRwn+1. Since R
is transitive and |R(w0)| ⩽ n, there exists i ̸= j such that wi = wj .
Since R is transitive, wj is reflexive. Hence,
F , wj |= ∀x (□P (x) → P (x)), and so F , w0 |= 3∀x (□P (x) → P (x)).
Since w0 was chosen arbitrarily, L |= An.
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Kripke incompleteness of QK4Altn (contd.)

(2) To show that An /∈ L, it suffices, in view of Proposition, to obtain
a Kripke bundle strongly validating L, but not An. Define

W := {w}, R := {(w,w)}, Dw := {a, b},

and
ρww := {(a, b), (b, b)}.

Put F0 := (W,R,D, ρ). Then, F0 is a Kripke bundle. To see that
F0 ̸⊩ An, consider the model M0 = (F0, I) with Iw(P ) = {b}. Since w
is the only world accessible from w, the individual b is the only
inheritor of a, and M0, w |= P (b), it follows that M0, w |= □P (a).
Since M0, w ̸|= P (a), it follows that M0, w ̸|= □P (a) → P (a) and so
M0, w ̸|= 3∀x (2P (x) → P (x)). On the other hand, since R is serial,
M0, w |= 3n+1⊤. Hence M0, w ̸|= An, and so F0 ̸|= An.

Valentin Shehtman and Dmitry Shkatov August 9, 2023 14 / 16



Kripke incompleteness of QK4Altn (contd.)

It remains to show that F0 ⊩ L. Since Altn ⊆ Altm whenever n ⩾ m,
it is sufficient to prove that F0 ⊩ QK4Alt1. Consider the family
Fk = (Wk, Rk) of propositional frames associated with F0. Since
R(= R0) and ρ(= R1) are both transitive and functional,
F0 |= K4Alt1 and F1 |= K4Alt1. Let k > 1. Since ρ is a function
with range {b}, by definition, for every c, e ∈ Dn,

cRke ⇐⇒ ∀j ej = b.

Hence, every c ∈ Dk has exactly one Rk-successor (b, . . . , b) ∈ Dk,
which implies that Rk is transitive and functional. Hence,
Fk |= K4Alt1, and so, by Proposition, F0 ⊩ K4Alt1. Also by
Proposition, F0 ⊩ QK. Hence, F0 ⊩ QK4Alt1.
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Kripke incompleteness of QK4Altn

Theorem

For every n ⩾ 2, the logic QS4Altn is Kripke incomplete.

Proof.
Let n ⩾ 1 and L = QS4Altn. Consider the formula

B := 32∀x (32P (x) → P (x)).

We show that L |= B, but B /∈ L.

To see that L |= B, observe that Kripke frames for L have a final
cluster, whose worlds validate ∀x (32P (x) → P (x)). Hence, Kripke
frames for L validate 32∀x (32P (x) → P (x)).

To see that B /∈ L, consider the following Kripke bundle: W := {u},
R := {(u, u)}, Du := {a, b}, ρuu := {(a, a), (a, b), (b, b)}; lastly,
F1 := (W,R,D, ρ). Then, F1 ⊩ L, but, if we put Iw(P ) = {b}, then
(F1, I), w ̸⊩ B.
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