Kripke (in)completeness of predicate modal logics with axioms of bounded alternativity

Valentin Shehtman and $\mathbf{Dmitry}\ \mathbf{Shkatov}$

FOMTL 2023 Ljubjana

August 9, 2023

We consider logics in the language with \bot , \rightarrow , \forall , and \Box that are extensions of the classical predicate logic **QCL**.

A precicate modal logic is a set of formulas containing \mathbf{QCL} and the minimal normal propositional modal logic \mathbf{K} , and closed under Substitution, Modus Ponens, Generalization, and Necessitation.

The minimal precicate modal logic is **QK**.

If Γ and Δ are sets of formulas, then $\Gamma + \Delta$ denotes the closure of $\Gamma \cup \Delta$ under Substitution, Modus Ponens, Generalization, and Necessitation.

If Λ is a propositional modal logic, then $\mathbf{Q}\Lambda := \mathbf{Q}\mathbf{K} + \Lambda$.

Kripke semantics with expanding domains

Definition

A *predicate frame* is a tuple F = (W, R, D), where (W, R) is a Kripke frame and $D = \{D_u \mid u \in W\}$ is a family of non-empty domains satisfying the expaning domains condition:

$$wRv \implies D_w \subseteq D_v.$$

Definition

A **Krike model** is a tuple (\mathbb{F}, I) , where **F** is a predicate frame and *I* is an interpretation function: $I_w(P) \subseteq D_w^n$, for every $w \in W$ and every *n*-ary predicate symbol *P*.

Truth relation in Kripke models

A D_w -sentence is an expression obtained from a formula by replacing free variables with copies of elements of D_w .

The truth relation \models between models M, worlds w, and D_w -sentences φ is defined by recursion:

- $M, w \models P(a_1, \ldots, a_n)$ if $(a_1, \ldots, a_n) \in I_w(P)$;
- $M, w \models \neg \varphi$ if $M, w \not\models \varphi$;
- $M, w \models \varphi \land \psi$ if $M, w \models \varphi$ and $M, w \models \psi$;
- $M, w \models \forall x \varphi(x)$ if $M, w \models \varphi(a)$ whenever $a \in D_w$;
- $M, w \models \Box \varphi$ if $M, v \models \varphi$ whenever $v \in R(w)$.

A formula is true in a model if its universal closure is true at every world. A formula is valid on a predicate frame F if it is true in every model over F. A formula is valid on a Kripke frame F if it is valid on every predicate frame over F.

The set of formulas valid on all Kripke frames coincides with **QK**.

Kripke completeness

A predicate modal logic L is *Kripke complete* if it coincides with the set of validities on a class of predicate frames, i.e., for every $\varphi \notin L$, there exists a predicate frame F such that $F \models L$, but $F \not\models \varphi$.

A formula φ follows from a set Γ of formulas in Kripke semantics (notation: $\Gamma \models \varphi$) if, for every predicate frame F,

$$\boldsymbol{F} \models \Gamma \implies \boldsymbol{F} \models \varphi.$$

Logics considered in this talk

Let $n \ge 1$. Define

$$\begin{array}{rcl} \boldsymbol{alt}_n & := & \neg \bigwedge_{0 \leqslant i \leqslant n} \diamondsuit(P_i \land \bigwedge_{j \neq i} \neg P_j); \\ \boldsymbol{ref} & := & \Box P \to P; \\ \boldsymbol{4} & := & \Box P \to \Box \Box P. \end{array}$$

It is well known that a Kripke frame F = (W, R) validates alt_n iff $|R(w)| \leq n$ whenever $w \in W$.

Define

\mathbf{QAlt}_n	:=	$\mathbf{QK} + \boldsymbol{alt}_n;$
\mathbf{QTAlt}_n	:=	$\mathbf{QAlt}_n + \boldsymbol{ref};$
$\mathbf{QK4Alt}_n$:=	$\mathbf{QAlt}_n + 4;$
$\mathbf{QS4Alt}_n$:=	$\mathbf{QK4Alt}_n + \boldsymbol{ref}_n$

Proposition

Let $n \ge 1$. Then, \mathbf{QAlt}_n , \mathbf{QTAlt}_n , $\mathbf{QK4Alt}_n$, and $\mathbf{QS4Alt}_n$ are not canonical, even though the corresponding propositional logics are.

Strong Kripke completeness of \mathbf{QAlt}_n and \mathbf{QTAlt}_n

Even though \mathbf{QAlt}_n and \mathbf{QTAlt}_n are not canonical, we have the following:

Theorem

Logics \mathbf{QAlt}_n and \mathbf{QTAlt}_n are strongly Kripke complete.

The outline of the proof is presented in the abstract. In a nutshell, given an *L*-consistent $(L \in {\mathbf{QAlt}_n, \mathbf{QTAlt}_n})$ theory Γ_0 , we select a submodel M = (W, R, D, I) of the canonical model M_L containing theory including Γ_0 and based on a predicate frame validating *L* in such a way that

$$\Gamma \in W \& \Diamond \varphi \in \Gamma \implies \exists \Delta \in R(\Gamma) (\varphi \in \Delta).$$

Kripke incompleteness of $\mathbf{QK4Alt}_n$ and $\mathbf{QS4Alt}_n$

On the other hand, $\mathbf{QK4Alt}_n$ and $\mathbf{QS4Alt}_n$ are Kripke incomplete.

We show that, we use the semantics of Kripke bundles.

Definition

A **Kripke bundle** is a tuple $\mathbb{F} = (W, R, D, \rho)$, where (W, R) is a Kripke frame, $D = \{D_u \mid u \in W\}$ is a family of non-empty disjoint domains, and $\rho = \{\rho_{uv} \mid (u, v) \in R\}$ is a family of *inheritance* relations $\rho_{uv} \subseteq D_u \times D_v$ satisfying the constraint that $\rho_{uv}(a) \neq \emptyset$ whenever uRv and $a \in D_u$ (i.e., every individual has at least one inheritor in each accessible world).

Definition

A **Krike bundle model** is a tuple (\mathbb{F}, I) , where \mathbb{F} is a Kripke bundle and I is an interpretation, defined as for Kripke models, i.e., $I_w(P) \subseteq D_w^n$, for every $w \in W$ and every *n*-ary predicate symbol P.

Truth relation in bundles

The truth relation \Vdash between models M, worlds w, and D_w -sentences φ is defined by recursion:

- $M, w \Vdash P(a_1, \ldots, a_n)$ if $(a_1, \ldots, a_n) \in I_w(P)$;
- $M, w \Vdash \neg \varphi$ if $M, w \not\models \varphi$;
- $M, w \Vdash \varphi \land \psi$ if $M, w \Vdash \varphi$ and $M, w \Vdash \psi$;
- $M, w \Vdash \forall x \varphi(x)$ if $M, w \Vdash \varphi(a)$ whenever $a \in D_u$;
- $M, w \Vdash \Box \varphi(a_1, \ldots, a_n)$, with distinct $a_1, \ldots, a_n \in D_u$ if

 $\forall v \in R(w) \,\forall b_1 \in \rho_{uv}(a_1) \dots \forall b_n \in \rho_{uv}(a_n) \, M, v \Vdash \varphi(b_1, \dots, b_n).$

NB If a occurs in $\Box \varphi$ several times, then determining whether $M, w \models \Box \varphi$ involves substituting the same inheritor for every occurrence of a in $\Box \varphi$.

Truth and validity

A formula is *true* in a Kripke bundle model if its universal closure is true at every world of the model. A formula φ is *strongly valid* in a Kripke bundle \mathbb{F} (notation: $\mathbb{F} \Vdash \varphi$) if every substitution instance of φ is true in every model over \mathbb{F} .

Proposition

Let \mathbb{F} be a Kripke bundle. Then the set $\{\varphi \mid \mathbb{F} \Vdash \varphi\}$ is a predicate modal logic.

Definition

With a Kripke bundle $\mathbb{F} = (W, R, D, \rho)$, we associate a family $\{(W_k, R_k) \mid k < \omega\}$ of Kripke frames, in the following way. Define

•
$$W_0 := W$$
 and $R_0 := R_1$

- $W_1 := \bigcup \{ D_w \mid w \in W \};$
- $R_1 := \bigcup \{ \rho_{uv} \mid (u, v) \in R \};$
- for every k > 1,

$$W_k := \bigcup \{ D_w^k \mid w \in W \};$$

 $R_k := \{ (\mathbf{a}, \mathbf{b}) \in D_k \times D_k \mid \forall i \, a_i R_1 b_i \& \forall i, j \, (a_i = a_j \Rightarrow b_i = b_j) \}.$

Proposition

Let \mathbb{F} be a Kripke bundle and φ be a propositional modal formula. Then $\mathbb{F} \Vdash \varphi$ iff $F_k \models \varphi$, for every $k < \omega$.

Theorem

For every $n \ge 1$, the logic **QK4Alt**_n is Kripke incomplete.

Proof.

Let $n \ge 1$ and $L = \mathbf{QK4Alt}_n$. Consider the formula

$$A_n := \Diamond^{n+1} \top \to \Diamond \,\forall x \, (\Box P(x) \to P(x)).$$

We show that (1) $L \models A_n$, but (2) $A_n \notin L$.

(1) Suppose that $\mathbf{F} = (W, R, D)$ and $\mathbf{F} \models L$. Then, R is transitive and $|R(w)| \leq n$ whenever $w \in W$. Assume $\mathbf{F}, w_0 \models \Diamond^{n+1} \top$. Then, there exist $w_1, \ldots, w_{n+1} \in W$ such that $w_0 R w_1 \ldots w_n R w_{n+1}$. Since Ris transitive and $|R(w_0)| \leq n$, there exists $i \neq j$ such that $w_i = w_j$. Since R is transitive, w_j is reflexive. Hence, $\mathbf{F}, w_j \models \forall x (\Box P(x) \to P(x))$, and so $\mathbf{F}, w_0 \models \Diamond \forall x (\Box P(x) \to P(x))$. Since w_0 was chosen arbitrarily, $L \models A_n$.

Kripke incompleteness of $\mathbf{QK4Alt}_n$ (contd.)

(2) To show that $A_n \notin L$, it suffices, in view of Proposition, to obtain a Kripke bundle strongly validating L, but not A_n . Define

$$W := \{w\}, R := \{(w, w)\}, D_w := \{a, b\},\$$

and

$$\rho_{ww} := \{(a, b), (b, b)\}.$$

Put $\mathbb{F}_0 := (W, R, D, \rho)$. Then, \mathbb{F}_0 is a Kripke bundle. To see that $\mathbb{F}_0 \not\models A_n$, consider the model $M_0 = (\mathbb{F}_0, I)$ with $I_w(P) = \{b\}$. Since wis the only world accessible from w, the individual b is the only inheritor of a, and $M_0, w \models P(b)$, it follows that $M_0, w \models \Box P(a)$. Since $M_0, w \not\models P(a)$, it follows that $M_0, w \not\models \Box P(a) \to P(a)$ and so $M_0, w \not\models \Diamond \forall x (\Box P(x) \to P(x))$. On the other hand, since R is serial, $M_0, w \models \Diamond^{n+1} \top$. Hence $M_0, w \not\models A_n$, and so $\mathbb{F}_0 \not\models A_n$.

Kripke incompleteness of $\mathbf{QK4Alt}_n$ (contd.)

It remains to show that $\mathbb{F}_0 \Vdash L$. Since $\operatorname{Alt}_n \subseteq \operatorname{Alt}_m$ whenever $n \ge m$, it is sufficient to prove that $\mathbb{F}_0 \Vdash \operatorname{QK4Alt}_1$. Consider the family $F_k = (W_k, R_k)$ of propositional frames associated with \mathbb{F}_0 . Since $R(=R_0)$ and $\rho(=R_1)$ are both transitive and functional, $F_0 \models \operatorname{K4Alt}_1$ and $F_1 \models \operatorname{K4Alt}_1$. Let k > 1. Since ρ is a function with range $\{b\}$, by definition, for every $\mathbf{c}, \mathbf{e} \in D_n$,

$$\mathbf{c}R_k\mathbf{e} \iff \forall j \, e_j = b.$$

Hence, every $\mathbf{c} \in D_k$ has exactly one R_k -successor $(b, \ldots, b) \in D_k$, which implies that R_k is transitive and functional. Hence, $F_k \models \mathbf{K4Alt}_1$, and so, by Proposition, $\mathbb{F}_0 \Vdash \mathbf{K4Alt}_1$. Also by Proposition, $\mathbb{F}_0 \Vdash \mathbf{QK}$. Hence, $\mathbb{F}_0 \Vdash \mathbf{QK4Alt}_1$.

Theorem

For every $n \ge 2$, the logic **QS4Alt**_n is Kripke incomplete.

Proof.

Let $n \ge 1$ and $L = \mathbf{QS4Alt}_n$. Consider the formula

$$B := \Diamond \Box \forall x (\Diamond \Box P(x) \to P(x)).$$

We show that $L \models B$, but $B \notin L$.

To see that $L \models B$, observe that Kripke frames for L have a final cluster, whose worlds validate $\forall x (\diamond \Box P(x) \rightarrow P(x))$. Hence, Kripke frames for L validate $\diamond \Box \forall x (\diamond \Box P(x) \rightarrow P(x))$.

To see that $B \notin L$, consider the following Kripke bundle: $W := \{u\}$, $R := \{(u, u)\}, D_u := \{a, b\}, \rho_{uu} := \{(a, a), (a, b), (b, b)\}$; lastly, $\mathbb{F}_1 := (W, R, D, \rho)$. Then, $\mathbb{F}_1 \Vdash L$, but, if we put $I_w(P) = \{b\}$, then $(\mathbb{F}_1, I), w \nvDash B$.