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1. Introduction and preliminaries

The Kripke frame semantics is a valuable tool for the analysis of propositional modal logics. Despite
by now well known phenomenon of propositional Kripke incompleteness, examples of Kripke incom-
plete propositional modal logics are rather contrived. By contrast, in predicate modal logic, Kripke
incompleteness is common, and the precise boundaries of the usefulness of Kripke frame semantics are
not as well understood as for propositional logics. At least in part, this situation arises since canonical
models for predicate modal logics are not as well-behaved as canonical models for propositional logics.
Even in cases when Kripke completeness can be obtained, a suitable Kripke frame is not canonical
(in other words, canonicity is not as common in predicate modal logic as it is in propositional modal
logic).

Here, we investigate both Kripke completeness and Kripke incompleteness in the context of log-
ics QAltn, which are minimal modal predicate logics containing the propositional axiom of bounded
alternativity (here, n ⩾ 1),

altn = ¬
∧

0⩽i⩽n

3(pi ∧
∧
j ̸=i

¬pj),

corresponding to the Kripke frame condition |R(w)| ⩽ n whenever w ∈ W (‘n-alternativity’), as well
as their minimal extensions containing axioms T (‘reflexivity’) and 4 (‘transitivity’). We show, using
selective submodels [2], that both QAltn and QTAltn are strongly Kripke complete and, using Kripke
bundle semantics [1, Chapter 5], that logics QK4Altn and QS4Altn are Kripke incomplete.1

We work with the language containing a countable supply of predicate letters of every arity, Boolean
connectives, quantifier symbols, and a unary modal operator □. The definition of a formula is standard.
We also use the abbreviation □⩽nA :=

∧n
i=0 □

iA. By a predicate modal logic we mean a set of formulas
including the classical predicate logic QCL, the minimal propositional modal logic K, and closed under
Substitution, Modus Ponens, Generalization, and Necessitation. If Λ is a propositional modal logic, the
minimal predicate modal logic including Λ is denoted by QΛ.

We briefly recall the Kripke frame semantics for predicate logics. A Kripke frame is a pair (W,R)
where W ̸= ∅ and R ⊆ W ×W . A predicate Kripke frame is a tuple F = (F,D) where F = (W,R) is
a Kripke frame and D = {Du | u ∈W} is a system of non-empty domains satisfying the condition that
Du ⊆ Dv whenever uRv (‘expanding domains’). A model over a predicate Kripke frame F is a pair
M = (F , ξ), where ξ is a family (ξu)u∈W of maps such that ξu(P

n) ⊆ Dn
u , for each n-ary predicate

letter Pn. The truth relation between models M , worlds u, and Du-sentences A (a Du-sentence is
obtained from a formula by substituting elements of Du for parameters of the formula) is standard;
in particular,

• M,u |= P (a1, . . . , an) if (a1, . . . , an) ∈ ξu(P );
• M,u |= □A(a1, . . . , an) if M, v |= A(a1, . . . , an) whenever v ∈ R(u).

A formula is true in a model if its universal closure is true at every world of the model. A formula is
valid on a predicate Kripke frame if it is true in every model over the predicate frame.

If C is a class of predicate Kripke frames, the set of formulas valid on C is a modal predicate logic,
denoted by L(C ). If there exists a class C of predicate Kripke frames such that L = L(C ), the logic
L is Kripke complete; if, in addition, every set of L-consistent formulas is satisfiable in a model over
a predicate Kripke frame validating L, then L is strongly Kripke complete.

1Strong completeness of logics QAltn was claimed, without proof, in [3]; here, we give a detailed proof.
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2. Kripke completeness of QAltn and QTAltn

Throughout this section, unless stated otherwise, L is a predicate modal logic. For completeness
proofs, we use languages extended with a set of constants of arbitrary cardinality. We assume, for now,
a fixed universal set S of constants of infinite cardinality κ. A set C ⊆ S of constants is S-small if
|S −C| = κ. If C is a set of constants, a C-sentence is a sentence possibly containing constants from C.
The set of all C-sentences is denoted by L(C). A theory is a set of C-sentences, for some C ⊆ S. If Γ
is a theory, the set of constants occurring in Γ is denoted by CΓ; the set of all CΓ-sentences is denoted
by L(Γ).

A theory Γ is Henkin if, for every sentence ∃xA(x) ∈ L(Γ), there exists c ∈ CΓ such that
∃xA(x) → A(c) ∈ Γ. A maximal L-consistent theory is called L-complete. It can be easily checked that
every L-complete Henkin theory Γ has the existence property: ∃xA(x) ∈ Γ ⇐⇒ (∃ c ∈ CΓ)A(c) ∈ Γ.

Let L be a first-order modal logic. An (L,S)-place (simply L-place if S is clear from the context or
immaterial) is an L-complete Henkin theory with an S-small set of constants.

Lemma 1. Every L-consistent theory with an S-small set of constants is included into some (L,S)-place.

The canonical predicate Kripke frame for L w.r.t. S is the tuple FS
L := (W S

L , R
S
L, D

S
L), where W S

L is
the set of all (L,S)-places; RS

L is the canonical accessibility relation on W S
L defined as follows: ΓRS

L∆
if □−Γ ⊆ ∆; and DS

L : W
S
L → 2S is the map defined by DS

L(Γ) = CΓ. The canonical Kripke model for
L w.r.t. S is the tuple M S

L := (FS
L , ξ

S
L), where FS

L is the canonical predicate Kripke frame and ξSL is
the canonical valuation defined by(ξSL)Γ(P

m
k ) := {c ∈ CmΓ | Pmk (c) ∈ Γ}.

Theorem 2. For every Γ ∈ W S
L and A ∈ L(CΓ),

MS
L,Γ |= A ⇐⇒ A ∈ Γ.

From now on the universal set of constants S is no longer fixed; from now on, it is a parameter.
A logic L is canonical if FS

L |= L, for every universal set S of constants. As in propositional logic, every
canonical logic is strongly Kripke complete, but the examples of predicate canonical logics are scarce
(see [1, Section 6.1]). In particular, it can be shown that logics QAltn and QTAltn are not canonical
(proof idea: every world Γ containing 3⊤ in canonical models for these logics sees infinitely many words
containing constants outside of CΓ). Nevertheless, these logics, as we next show, are Kripke complete.
To prove this, we use the method of selective submodels [2, Section 6] resembling selective filtration in
propositional modal logic and Tarski-Vaught test in classical model theory.

A Kripke model M ′ = (W ′, R′, D′, ξ′) is a weak submodel of a Kripke model M = (W,R,D, ξ)
if W ′ ⊆ W , R′ ⊆ R, and, for every w ∈ W ′, both Dw = D′

w and ξ′w = ξw. If, additionally,
M,w |= 3A =⇒ ∃u ∈ R′(w)M,u |= A, for every w ∈ W ′ and every Dw-sentence A, then M ′ is a
selective weak submodel of M .

Lemma 3. Let M ′ = (W ′, R′, D′, ξ′) be a selective weak submodel of M = (W,R,D, ξ). Then
M,w |= A ⇐⇒ M ′, w |= A, for every w ∈W ′ and every Dw-sentence A.

A quasi-canonical model for a logic L is a selective weak submodel of MS
L (for some S). A logic L

is quasi-canonical if, for every L-place Γ, there exists a quasi-canonical model over a predicate frame
containing Γ and validating L. By Theorem 2 and Lemma 3, if M ′ = (W ′, R′, D′, ξ′) a quasi-canonical
model for L, then, M ′,Γ |= A ⇐⇒ A ∈ Γ, for every Γ ∈W ′. Hence, due to Lemma 1,

Theorem 4. Every quasi-canonical predicate modal logic is strongly Kripke complete.

Theorem 5. Let L = QAltn or L = QTAltn, for some n ⩾ 1. Then L is quasi-canonical and, hence,
strongly Kripke complete.

Proof. Let ML = (WL, RL, DL, ξL) be a canonical model for L, and let Γ0 ∈ WL. We obtain a selective
submodel M of ML over a frame validating L and containing Γ0. First, we prove the following:

Lemma 6. Let Γ ∈ WL and XΓ := {∆ | ∆ is L-complete & L(∆) = L(Γ) & □−Γ ⊆ ∆}. Then
|XΓ| ⩽ n.

Proof. Suppose that ∆0, . . . ,∆n are distinct theories from XΓ. Since these theories are L-complete and
L(∆0) = . . . = L(∆n) = L(Γ), for each i, j ∈ {0, . . . , n} with i ̸= j, there exists Aij ∈ L(Γ) such that
Aij ∈ ∆i, but Aij /∈ ∆j . For every i ∈ {0, . . . , n}, let Bi =

∧
j ̸=i

(Aij ∧ ¬Aji). Then, Bi ∈ ∆j iff i = j.

Hence,
∧

0⩽i⩽n
3(Bi ∧

∧
j ̸=i

¬Bj) ∈ Γ. But ⊢QAltn ¬(
∧
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3(Bi ∧

∧
j ̸=i

¬Bj)). Thus, Γ is L-inconsistent,

contrary to the assumption. □
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We now proceed with the proof of the theorem, distinguishing two cases.
Case L = QAltn: We define the set W of worlds and the accessibility relation R of the model M

by recursion. Set W0 = ∅, W1 = {Γ0}, and R0 = R1 = ∅. Suppose the sets W0, . . . ,Wk and the
relations R0, . . . , Rk, for some k < ω, have been defined. To define Wk+1 and Rk+1, consider, for each
Γ ∈ Wk −Wk−1, the set XΓ defined in Lemma 6. By Lemma 6, |XΓ| ⩽ n. By Lemma 1, for each
∆ ∈ XΓ, there exists ∆′ ∈ WL such that ∆ ⊆ ∆′; let Y Γ be the set containing exactly one such
∆′ ∈ WL for each ∆ ∈ XΓ. Then, |Y Γ| ⩽ n. By Existence Lemma and Lindenbaum lemma, for every
sentence A, if 3A ∈ Γ, then (∃∆0 ∈ XΓ)A ∈ ∆. Hence,

3A ∈ Γ =⇒ (∃∆ ∈ Y Γ)A ∈ ∆. (1)

Set Wk+1 = Wk ∪
⋃

Γ∈Wk−Wk−1

Y Γ and Rk+1 = Rk ∪
⋃

Γ∈Wk−Wk−1

(
{Γ} × Y Γ

)
. As we have seen, if

Γ ∈ Wk − Wk−1, then |Y Γ| ⩽ n, and so |Rk+1(Γ)| ⩽ n. Observe that Rk+1 ⊂ RL. Lastly, let
W =

⋃
k<ω

Wk and R =
⋃
k<ω

Rk. Then, by (1),

∀Γ ∈W ∀A ∈ L(Γ)
(
3A ∈ Γ =⇒ (∃∆ ∈ R(Γ))A ∈ ∆

)
. (2)

By definition of R and Lemma 6, |R(Γ)| ⩽ n, for each Γ ∈ W . Also, R ⊆ RL. Hence, (W,R) |= altn.
Lastly, let M := ML ↾ W . Then, (W,R,D) |= L. Thus, M is a submodel of ML over an L-frame
containing Γ0. By (2) and Theorem 2, M is a selective submodel of ML.

Case L = QTAltn: The set W and the relation R are again defined by recursion. We set
W0 = {Γ0}, R0 = R1 = {(Γ0,Γ0)}. We need to make sure that every relation Rk, and hence their
union R, is reflexive. Suppose Rk is reflexive, for some k < ω. Since RL is reflexive, it follows that
Γ ∈ XΓ. We pick the L-complete set Γ′ ∈ Y Γ so that Γ′ = Γ. Then, Rk+1 is reflexive. Hence, R is
reflexive, and so and (W,R,D) |= L. □

3. Kripke incompleteness of QK4Altn and QS4Altn

To prove Kripke incompleteness of logics QK4Altn and QS4Altn, we use the semantics of Kripke
bundles [1, Chapter 5]. A Kripke bundle is a tuple F = (F,D, ρ), where F = (W,R) is a Kripke
frame, D = {Du | u ∈ W} is a family of non-empty disjoint domains, and ρ = {ρuv | (u, v) ∈ R} is
a family of inheritance relations ρuv ⊆ Du × Dv satisfying the constraint that ρuv(a) ̸= ∅ whenever
uRv and a ∈ Du. Models over Kripke bundles are defined analogously to models over Kripke frames.
The truth clause for formulas beginning with □ is as follows: M,u |= □A(a1, . . . , an), with distinct
a1, . . . , an ∈ Du, if

∀v ∈ R(u)∀b1 ∈ ρuv(a1) . . . ∀bn ∈ ρuv(an)M, v |= A(b1, . . . , bn).

A formula is true in Kripke bundle model if its universal closure is true at every world of the model.
A formula A is strongly valid in a Kripke bundle F (notation: F ⊩ A) if every substitution instance of
A is true in every model over F. The following is well known [1, Proposition 5.2.12]:

Proposition 7. Let F be a Kripke bundle. Then the set {A | F ⊩ A} is a modal predicate logic.

With every Kripke bundle F = (W,R,D, ρ), we associate a family {(Wn, Rn) | n < ω} of Kripke
frames: put D0 := W and R0 := R; put D1 :=

⋃
{Du | u ∈ W} and R1 :=

⋃
{ρuv | uRv}; for every

n > 1, put Dn :=
⋃
{Dn

u | u ∈W} and

Rn := {(a, c) ∈ Dn ×Dn | ∀j ajR1bj and ∀j, k (aj = ak ⇒ bj = bk)}.
The following is well known [1, Proposition 5.3.7]:

Proposition 8. Let F be a Kripke bundle and A a modal propositional formula. Then, F ⊩ A iff
Fn |= A, for every n < ω.

Theorem 9. Let L = QK4Altn or L = QS4Altn, for some n ⩾ 1. Then, L is Kripke incomplete.

To prove incompleteness of QK4Altn, we make use of the formula ∀ref := ∀x (□P (x) → P (x)). We
show that every Kripke predicate frame validating QK4Altn validates An := 3⩽n+1⊤ → 3∀ref , but
An /∈ QK4Altn.

Suppose that F = (W,R,D) |= QK4Altn, and so R is transitive and n-alternative. Let M be
a model over F and u0 ∈ W . Assume that M,u0 |= 3⩽n+1. Then, there exist u1, . . . , un+1 ∈ W such
that u0Ru1R . . . Run+1. Since R is n-alternative, there exist k, j ⩽ n+ 1 such that k ̸= j and uk = uj .
But then uk is reflexive, and so M,uk |= ∀ref . Hence, M,u0 |= 3∀ref and so M,u0 |= An.
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To show that A /∈ QK4Altn, in view of Proposition 7, it suffices to obtain a Kripke bundle
strongly validating QK4Altn, but refuting A. Define W = {u}, R = {(u, u)}, Du = {a, b}, and
ρ = {(a, b), (b, b)}. Put F0 = (W,R,D, ρ). It should be clear that F0 is a Kripke bundle. To see
that F0 ̸⊩ A, consider the model M0 = (F0, ξ) with ξu(P ) = {b}. Since M0, u |= P (b), the world u
is reflexive, and b is the unique inheritor of a, it follows that M0, u |= □P (a). Since M0, u ̸|= P (a),
it follows that M0, u ̸|= □P (a) → P (a) and so M0, u ̸|= 3∀ref . On the other hand, since R is serial,
M0, u |= 3⩽n+1⊤. Hence, F0 ̸|= An.

It remains to prove that F0 ⊩ QK4Altn. We use Proposition 8 to prove that F0 ⊩ QK4Alt1 and
hence F0 ⊩ QK4Altn, for every n ⩾ 1. It should be clear that F0 = (W,R) |= K4Alt1. Let n ⩾ 1 and
d, e ∈ Dn. Then, dRne iff ∀j ej = b; hence, every d ∈ Dn has exactly one Rn-successor, b, and so Rn
is transitive and 1-alternative (in fact, functional). Thus, Fn |= K4Alt1, for every n < ω. Hence, by
Proposition 8, F0 ⊩ QK4Alt1 and so F0 ⊩ QK4Altn, for every n ⩾ 1.

The proof for QS4Altn is analogous. Instead of the formula An, we use 32∀x (32P (x) → P (x)),
and instead of the Kripke bundle F0, we use the Kripke bundle F1 defined as follows: W = {u},
R = {(u, u)}, Du = {a, b}, ρ = {(a, a), (a, b), (b, b)}, and F1 = (W,R,D, ρ).
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