
Expressing global supervenience in inquisitive modal logic

Introduction. Inquisitive logic [4] is an approach to logic which allows us to handle in
a uniform way not only formulas regimenting statements, but also formulas regimenting
various kinds of questions. For example, for every formula α of propositional or predicate
logic, we will also have a corresponding formula ?α representing the yes/no question
whether α. Adding modalities to inquisitive logics we obtain inquisitive modal logics,
conservative extensions of standard modal logics in which modalities may be applied to
questions. E.g., in the context of a standard Kripke model, we can interpret not only a
modal statement of the form □p (where p is atomic), which has the usual interpretation,
but also a modal statement of the form □?p, which expresses the fact that all successors
agree on the truth value of p. This extension of □ to questions has been studied so far in
the setting of propositional modal logic [6, 2]; in this context, the possibility of applying
□ to questions does not add to the expressive power of standard modal logic: for instance,
□?p is equivalent to □p∨□¬p; more generally, every modal formula of the form □µ where
µ is a question can be turned into an equivalent formula of standard modal logic.

In this talk, we will see that the situation changes when we turn to the setting of
modal predicate logic. In this context, there are formulas of the form □µ, where µ is an
inquisitive formula, that are not equivalent to any formula of standard modal predicate
logic. Moreover, some such formulas express very interesting modal facts. In particular,
we will see that by adding □ to inquisitive first-order logic, we are able to express the
global supervience of certain properties on others, i.e., the fact that the extension of the
former is functionally determined, within the given modal range, by the extension of the
latter. As an example, if P and Q are unary predicates, we may say that Q globally
supervenes on P at world w in case:

∀v, v′ ∈ R[w] : Pv = Pv′ implies Qv = Qv′

whereR[w] = {v | wRv} and Pv is the extension of P at world v (similarly for Pv′ , Qv, Qv′).
We will show that this property is not expressible in standard modal predicate logic, but
it is expressible by a simple modal formula in inquisitive modal predicate logic. This
illustrates how, in the predicate logic setting, allowing □ to apply to questions increases
the expressive power of modal predicate logic in an interesting way. We then turn to the
properties of the resulting modal logic. We will then show how a broad fragment of our
inquisitive modal logic allows for a kind of standard translation to classical first-order
logic; as a consequence, the set of validities in this fragment is recursively enumerable,
and the entailment relation is compact. (This not obvious, since it is an open problem
whether these properties hold for the full language of inquisitive first-order logic, even
without modalities.) Interestingly, this fragment includes all modal formulas expressing
global supervenience claims.

Global supervenience. Supervenience claims are at the heart of many key discussions
in analytic philosophy (see [10] for an overview). The general idea behind the notion of
supervenience is as follows: given two classes of properties A and B, B supervenes on
A if there cannot be a difference with respect to B-properties without a corresponding
difference in A-properties. This informal idea can be made precise in different ways. One
understanding focuses on individuals: two individuals cannot differ in their B-properties
without also differing in their A-properties; this leads to various notions of individual
supervenience (see [8]). Another understanding focuses on worlds as a whole: two worlds
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cannot differ in the extension of the B-properties without also differing in the extension
of the A-properties. This leads to a notion of global supervenience, which in the context
of a constant-domain Kripke model can be characterized as follows:1

P1, . . . , Pn ⇝w Q1, . . . , Qm ⇐⇒ ∀v, v′ ∈ R[w] :

if (P1)v = (P1)v′ and . . . and (Pn)v = (Pn)v′

then (Q1)v = (Q1)v′ and . . . and (Qn)v = (Qn)v′

If the above relation holds, we say that Q1, . . . , Qm globally supervene on P1, . . . , Pn in
world w. We refer to Q1, . . . , Qm as the supervenient properties and to P1, . . . , Pn as the
subvenient properties. For simplicity, we will focus on the case of a single supervenient
property and a single subvenient property, in which case the relation amounts to:

P ⇝w Q ⇐⇒ ∀v, v′ ∈ R[w] : Pv = Pv′ implies Qv = Qv′

However, our discussion extends straightforwardly to the general case.

Global supervenience is not definable in modal predicate logic. Consider stan-
dard modal predicate logic, QML, interpreted over first-order Kripke models with constant
domains. We claim that there is no formula α of QML such thatM,w |= α ⇐⇒ P ⇝w Q.

To prove this, we give a model that contains a pair of worlds w0, w1 which agree on
all formulas of QML, and yet global supervenience holds in w1 but not in w0. Our model
has the set N of natural numbers as its domain. Let E be the sets of even numbers and

X = {X ⊆ N | X contains finitely many even numbers and all but finitely many odd numbers}

The universe of possible worlds includes, in addition to w0 and w1, worlds of the form vXi
where X ∈ X and i ∈ {0, 1}: at world vXi, the extension of P is X, while the extension
of Q is either ∅ of N depending on the Boolean value i:

PvXi = X QvXi =

{
N if i = 1
∅ if i = 0

At worlds w0 and w1, both extensions are empty. Next, we define a function n : X → {0, 1}
as follows: n(X) = 0 if #(X ∩ E) is even, and n(X) = 1 if #(X ∩ E) is odd (note that
X ∩ E is finite by definition of X ). The accessibility relation is then defined as follows:

• R[w0] = {vXi | X ∈ X and i ∈ {0, 1}};

• R[w1] = {vXi | X ∈ X and i = n(X)};

• R[v] = ∅ for any world v distinct from w0, w1.

We have P ⇝w1 Q but not P ⇝w0 Q. To see that the supervenience holds in w1, suppose
vXi and vY j are two successors of w1 that assign the same extension to P ; then X = Y ,
and so by the definition of R[w1] we have i = n(X) = n(Y ) = j, which implies that the
extension of Q is the same in vXi as in vY j . However, we do not have P ⇝w0 Q: indeed,

1It should be noted that there are other notions of global supervenience, which are designed to apply
in a setting where domains are not constant across worlds (see among others [12, 1, 9]). While most of the
literature on global supervenience has focused on these other notions, the version that we identify seems
to be an eminently natural way to cash out the idea of global supervenience in a constant-domain setting,
and it is indeed the original characterization of global supervenience to be found in Kim’s [8].

2



for any X ∈ X , the worlds vX0 and vX1 are both successors of w0, and they assign the
same extension X to P , but they disagree on the extension of Q.

At the same time, w0 and w1 are indistinguishable by formulas of QML, since they are
bisimilar (for the notion of bisimulation in the setting of QML, see [13]). To argue for this,
think in terms of a bisimulation game between two players, Spoiler and Duplicator. We
sketch a winning strategy for Duplicator in the game starting from w0 and w1. In the first
part of the game, until Spoiler picks an element from the domain N, Duplicator responds
with the same element. Now suppose at some point Spoiler decides to pick a successor
of w0 or w1. The only interesting case to consider is the one where Spoiler picks a world
vXi ∈ R[w0] such that i ̸= n(X) (in any other case, Duplicator can respond simply by
picking the same successor). In that case, Duplicator picks vY i where Y = X ∪ {h} for
some even number h which is different from any number in X and from any number picked
so far in the game (this is possible sinceX∩E is finite). Note that #(Y ∩E) = #(X∩E)+1
and therefore, since i ̸= n(X), we have i = n(Y ), which implies that indeed vY i ∈ R[w1],
as required. At this point, since the worlds vXi and vY i that have been reached do not
have any successors, the only thing Spoiler can do is to pick an object on either side.
Suppose (a1, . . . , am) and (b1, . . . , bm) are the tuples picked so far. If Spoiler picks am+1,
Duplicator may always pick bm+1 in such a way that (i) am+1 ∈ X ⇐⇒ bm+1 ∈ Y ; (ii) if
am+1 = aj for some j ≤ m then bm+1 = bj , while if am+1 is distinct from all the previous
aj , then bm+1 is distinct from all the previous bj . It is possible to achieve both (i) and
(ii), since Y ∈ X guarantees that both Y and N − Y are infinite, and so we may always
pick a fresh element in either of them. The argument is analogous if Spoiler picks bm+1.
It is easy to check that this is indeed a winning strategy for Duplicator.2

Global supervenience in inquisitive modal logic. We consider a system InqQML□
of inquisitive modal logic obtained by adding a modality □ to inquisitive first-order
logic [4]. The language is given by the following definition:

φ := Rx1 . . . xn | x1 = x2 | ⊥ | φ ∧ φ | φ→ φ | ∀xφ | □φ | φ

⩾

φ | ∃∃xφ

As customary in inquisitive logic, we define ¬φ := (φ→ ⊥), φ∨ψ := ¬(¬φ∧¬ψ), ∃xφ :=
¬∀x¬φ and ?φ := φ

⩾

¬φ. The operators

⩾

and ∃∃ are called inquisitive disjunction
and inquisitive existential quantifier and regarded as question-forming operators. The
fragment of the language without these operators can be identified with standard modal
predicate logic QML, while the fragment including

⩾

but not ∃∃ will be denoted InqQML−□.
Models for InqQML□ are standard Kripke models with constant domains. However,

following inquisitive semantics [7], the interpretation of InqQML□ takes the form of a
recursive definition of a relation s |=g φ called support, that holds between a set of worlds
s, called an information state, and a formula φ (relative to an assignment g). A relation of
truth at a world is retrieved by defining w |=g φ as a shorthand for {w} |=g φ. A formula
φ is said to be truth-conditional if support for φ boils down to truth at each world, in the
sense that for every model M , state s, and assignment g:

s |=g φ ⇐⇒ ∀w ∈ s : w |=g φ

Thus, if a formula is truth conditional then its semantics is completely determined by its
truth conditions. The semantic clauses for atoms, connectives, and quantifiers are the
standard ones from inquisitive logic (see [4]). As for formulas of the form □φ, they are

2The idea for this proof was developed in collaboration with Gianluca Grilletti.
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stipulated to be truth-conditional with the following truth conditions:

w |=g □φ ⇐⇒ R[w] |=g φ

It is easy to check that every formula α of standard modal logic (i.e., without
⩾

or ∃∃)
is truth-conditional, and its truth conditions coincide with the ones given by standard
Kripke semantics. On the other hand, formulas involving inquisitive connectives are not
in general truth-conditional. In particular, the formula ∀x?Px is supported in s just in
case the extension of P is the same in all worlds in s:

s |= ∀x?Px ⇐⇒ ∀v, v′ ∈ s : Pv = Pv′

Using this fact and the semantic clauses, it is easy to check that the modal formula
□(∀x?Px→ ∀x?Qx) is true at a world just in case Q globally supervenes on P :

w |= □(∀x?Px→ ∀x?Qx) ⇐⇒ P ⇝w Q

Thus, in InqQML□ we have a (truth-conditional) formula that expresses the global super-
venience of Q on P . Given the results in the previous section, this implies that the formula
□(∀x?Px → ∀x?Qx) is not equivalent to any formula of QML. Thus, in contrast to the
propositional case, in the predicate logic setting allowing □ to apply to questions allows
us to express (interesting) modal properties that standard modal logic cannot express.

More generally, the claim that Q1, . . . , Qm supervene on P1, . . . , Pn is expressed by:

□(∀x?P1x ∧ · · · ∧ ∀x?Pnx → ∀x?Q1x ∧ · · · ∧ ∀x?Qmx)

Two remarks: first, formulas expressing global supervenience relations do not contain ∃∃,
and so they are in the fragment InqQML−□. Second, such formulas take the form of strict
conditionals □(φ→ ψ) whose antecedent and consequent are questions; more specifically,
the antecedent is the question asking for the extension of the subvenient properties, while
the consequent is the question asking for the extension of the supervenient properties.3

Meta-theoretic properties of InqQML−□. We will show that InqQML−□, the ∃∃-free
fragment of our logic, retains the key meta-theoretic properties of first-order logic. To
show this, we build on ideas developed in [11] and [5]. First, we show that we can
inductively define for each formula φ of InqQML−□ a number nφ such that φ is nφ-coherent
in the sense that the following holds for any M, s, g:

M, s |=g φ ⇐⇒ ∀t ⊆ s with #t ≤ nφ :M, t |=g φ

Second, we define a family of translations from InqQML−□ to a suitable two-sorted first-
order language equipped with world variables. In particular, for any finite set s =
{w1, . . . ,wn} of world variables, we define a corresponding translation trs(φ) which be-
haves semantically like φ on information states of size up to the number n of world
variables in s. We then show that for any set Φ ∪ {ψ} of formulas from InqQML−□, if s is
a set consisting of nψ-many world variables, we have:

Φ |=InqQML−□
ψ ⇐⇒ trs(Φ) |=FOL trs(ψ)

where on the left we have entailment in InqQML−□ and on the right entailment in classical
(two-sorted) first-order logic. Using this connection, it is then easy to show that InqQML−□
is entailment-compact (i.e., Φ |= ψ implies Φ0 |= ψ for some finite Φ0 ⊆ Φ) and the set
of theorems of InqQML−□ is recursively enumerable. In sum, we will argue that InqQML−□
provides a natural extension of standard modal predicate logic that, among other things,
allows us to regiment reasoning about global supervenience claims.

3In the setting of propositional modal logic, inquisitive strict conditionals have been studied in [3].
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