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Introduction

The present booklet contains extended abstract of talks presented at the workshop First-Order
Modal and Temporal Logics: State of the Art and Perspectives held on 7–11 Auguest 2023 as part of
34th European Summer School in Logic, Language and Information at the University of Ljubjana.

The workshop consisted of 5 invited and 7 contributed talks. Extended abstracts of all the contributed
talks have been peer-reviewed by the members of the Programme Committee, listed on page 1 of this
booklet.



Invited Talks



PROOFS WITH MODALITY: CHALLENGES AND PERSPECTIVES

BAHAREH AFSHARI

This talk is an invitation to revisit the proof theory of first-order modal and temporal logics in the
light of advances in sequent calculi for modal and first order logic. Cyclic and ill-founded proofs provide
a versatile grounding for the study of logics of recursive and/or co-recursive concepts. We survey some
of the advantages offered by this notion of proof in the form of streamlined soundness and completeness
arguments for modal and temporal logics and their applications to interpolation and proof search.
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WHY PREDICATE ABSTRACTS (AND HOW)

MELVIN FITTING

Bertrand Russell (eventually) realized that definite descriptions need their scopes made explicit. In
modal logics, which can have also have non-rigid constants, this is especially the case. Machinery for
all this exists, predicate abstraction is one version, but it is not as well-known as it should be. I will
present syntax and semantics suitable for this. Time won’t permit discussion of corresponding tableau
systems. But there should be enough material to get across the general need for predicate abstracts,
and the general ideas of how they behave.
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ADMISSIBLE SEMANTICS FOR QUANTIFIED MODAL AND TEMPORAL

LOGICS

ROBERT GOLDBLATT

The term admissible semantics refers to the use of possible-worlds models having a restriction on
which sets of worlds are admissible as propositions. Such models have proven effective in characterising
propositional modal logics that are incomplete for their Kripke frame semantics.

There are axiomatically defined systems of quantified modal logic that cannot be characterised by
the kind of possible-worlds models introduced by Kripke, even though the propositional fragments
of those logics are characterised by their Kripke frames. We will describe how that this failure of
completeness under Kripke semantics to lift from the propositional to the quantificational level can be
overcome by developing a suitable notion of admissible model for quantified modal logics, leading to
semantic characterisations of such logics in general. This requires a new interpretation of universal and
existential quantifiers that takes into account the admissibility of propositions. The talk will explain
the motivation for this interpretation.

It will also discuss an application to temporal logic. It has been known since the 1960’s that tem-
poral predicate logic over the real time flow is not recursively axiomatisable. What then of the axiom
system that combines the standard deductive machinery of first-order logic with that of the temporal
propositional logic of real time? It transpires that this system is strongly complete for validity in all
admissible models over real time.

References

[1] Robert Goldblatt. Quantifiers, Propositions and Identity: Admissible Semantics for Quantified Modal and Sub-

structural Logics, volume 38 of Lecture Notes in Logic. Cambridge University Press and the Association for Symbolic

Logic, 2011.
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DEFINITIONS AND (UNIFORM) INTERPOLANTS

IN FIRST-ORDER MODAL LOGIC

AGI KURUCZ , FRANK WOLTER, AND MICHAEL ZAKHARYASCHEV

We consider some decidable fragments of first-order modal logics that do not enjoy the Craig in-
terpolation or projective Beth definability properties, and so the existence of interpolants and explicit
definitions of predicates do not directly reduce to the validity problem. Our concern is the compu-
tational complexity of deciding whether (uniform) interpolants and definitions exist for given input
formulas.
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COMPLETENESS IN FIRST-ORDER MODAL LOGIC: THE PRESENT STAGE

VALENTIN SHEHTMAN

The talk will give an overview of completeness and incompleteness results in first-order modal logic
obtained in the 21st century. The situation can be briefly characterized as follows: completeness is
unpredictable for Kripke and Kripke sheaf semantics, often expectable for simplicial semantics and
usually unknown for intermediate semantics (Kripke bundle, functorial, Kripke metaframe). We will
also discuss operations on logics and frames preserving completeness and the construction of Kripke
completion.
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EXPRESSING GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC

IVANO CIARDELLI

Introduction. Inquisitive logic [4] is an approach to logic which allows us to handle in a uniform way
not only formulas regimenting statements, but also formulas regimenting various kinds of questions.
For example, for every formula α of propositional or predicate logic, we will also have a corresponding
formula ?α representing the yes/no question whether α. Adding modalities to inquisitive logics we
obtain inquisitive modal logics, conservative extensions of standard modal logics in which modalities
may be applied to questions. E.g., in the context of a standard Kripke model, we can interpret not only
a modal statement of the form 2p (where p is atomic), which has the usual interpretation, but also a
modal statement of the form 2?p, which expresses the fact that all successors agree on the truth value
of p. This extension of 2 to questions has been studied so far in the setting of propositional modal logic
[7, 2]; in this context, the possibility of applying 2 to questions does not add to the expressive power of
standard modal logic: for instance, 2?p is equivalent to 2p∨2¬p; more generally, every modal formula
of the form 2µ where µ is a question can be turned into an equivalent formula of standard modal logic.

In this talk, we will see that the situation changes when we turn to the setting of modal predicate
logic. In this context, there are formulas of the form 2µ, where µ is an inquisitive formula, that are
not equivalent to any formula of standard modal predicate logic. Moreover, some such formulas express
very interesting modal facts. In particular, we will see that by adding 2 to inquisitive first-order logic,
we are able to express the global supervience of certain properties on others, i.e., the fact that the
extension of the former is functionally determined, within the given modal range, by the extension of
the latter. As an example, if P and Q are unary predicates, we may say that Q globally supervenes on
P at world w in case:

∀v, v′ ∈ R[w] : Pv = Pv′ implies Qv = Qv′

where R[w] = {v | wRv} and Pv is the extension of P at world v (similarly for Pv′ , Qv, Qv′). We will
show that this property is not expressible in standard modal predicate logic, but it is expressible by a
simple modal formula in inquisitive modal predicate logic. This illustrates how, in the predicate logic
setting, allowing 2 to apply to questions increases the expressive power of modal predicate logic in an
interesting way. We then turn to the properties of the resulting modal logic. We will then show how a
broad fragment of our inquisitive modal logic allows for a kind of standard translation to classical first-
order logic; as a consequence, the set of validities in this fragment is recursively enumerable, and the
entailment relation is compact. (This not obvious, since it is an open problem whether these properties
hold for the full language of inquisitive first-order logic, even without modalities.) Interestingly, this
fragment includes all modal formulas expressing global supervenience claims.
Global supervenience. Supervenience claims are at the heart of many key discussions in analytic phi-
losophy (see [10] for an overview). The general idea behind the notion of supervenience is as follows:
given two classes of properties A and B, B supervenes on A if there cannot be a difference with respect
to B-properties without a corresponding difference in A-properties. This informal idea can be made
precise in different ways. One understanding focuses on individuals: two individuals cannot differ in
their B-properties without also differing in their A-properties; this leads to various notions of individual
supervenience (see [8]). Another understanding focuses on worlds as a whole: two worlds cannot differ
in the extension of the B-properties without also differing in the extension of the A-properties. This
leads to a notion of global supervenience, which in the context of a constant-domain Kripke model can
be characterized as follows:1

P1, . . . , Pn ;w Q1, . . . , Qm ⇐⇒ ∀v, v′ ∈ R[w] :

if (P1)v = (P1)v′ and . . . and (Pn)v = (Pn)v′

then (Q1)v = (Q1)v′ and . . . and (Qn)v = (Qn)v′

1It should be noted that there are other notions of global supervenience, which are designed to apply in a setting where

domains are not constant across worlds (see among others [12, 1, 9]). While most of the literature on global supervenience

has focused on these other notions, the version that we identify seems to be an eminently natural way to cash out the idea
of global supervenience in a constant-domain setting, and it is indeed the original characterization of global supervenience

to be found in Kim’s [8].
11



12 IVANO CIARDELLI

If the above relation holds, we say that Q1, . . . , Qm globally supervene on P1, . . . , Pn in world w. We
refer to Q1, . . . , Qm as the supervenient properties and to P1, . . . , Pn as the subvenient properties. For
simplicity, we will focus on the case of a single supervenient property and a single subvenient property,
in which case the relation amounts to:

P ;w Q ⇐⇒ ∀v, v′ ∈ R[w] : Pv = Pv′ implies Qv = Qv′

However, our discussion extends straightforwardly to the general case.
Global supervenience is not definable in modal predicate logic. Consider standard modal predicate
logic, QML, interpreted over first-order Kripke models with constant domains. We claim that there is
no formula α of QML such that M,w |= α ⇐⇒ P ;w Q.

To prove this, we give a model that contains a pair of worlds w0, w1 which agree on all formulas of
QML, and yet global supervenience holds in w1 but not in w0. Our model has the set N of natural
numbers as its domain. Let E be the sets of even numbers and

X = {X ⊆ N | X contains finitely many even numbers and all but finitely many odd numbers}
The universe of possible worlds includes, in addition to w0 and w1, worlds of the form vXi where X ∈ X
and i ∈ {0, 1}: at world vXi, the extension of P is X, while the extension of Q is either ∅ of N depending
on the Boolean value i:

PvXi
= X QvXi

=

{
N if i = 1
∅ if i = 0

At worlds w0 and w1, both extensions are empty. Next, we define a function n : X → {0, 1} as follows:
n(X) = 0 if #(X ∩E) is even, and n(X) = 1 if #(X ∩E) is odd (note that X ∩E is finite by definition
of X ). The accessibility relation is then defined as follows:

• R[w0] = {vXi | X ∈ X and i ∈ {0, 1}};
• R[w1] = {vXi | X ∈ X and i = n(X)};
• R[v] = ∅ for any world v distinct from w0, w1.

We have P ;w1
Q but not P ;w0

Q. To see that the supervenience holds in w1, suppose vXi and vY j
are two successors of w1 that assign the same extension to P ; then X = Y , and so by the definition of
R[w1] we have i = n(X) = n(Y ) = j, which implies that the extension of Q is the same in vXi as in
vY j . However, we do not have P ;w0 Q: indeed, for any X ∈ X , the worlds vX0 and vX1 are both
successors of w0, and they assign the same extension X to P , but they disagree on the extension of Q.

At the same time, w0 and w1 are indistinguishable by formulas of QML, since they are bisimilar
(for the notion of bisimulation in the setting of QML, see [13]). To argue for this, think in terms of
a bisimulation game between two players, Spoiler and Duplicator. We sketch a winning strategy for
Duplicator in the game starting from w0 and w1. In the first part of the game, until Spoiler picks an
element from the domain N, Duplicator responds with the same element. Now suppose at some point
Spoiler decides to pick a successor of w0 or w1. The only interesting case to consider is the one where
Spoiler picks a world vXi ∈ R[w0] such that i ̸= n(X) (in any other case, Duplicator can respond simply
by picking the same successor). In that case, Duplicator picks vY i where Y = X ∪ {h} for some even
number h which is different from any number in X and from any number picked so far in the game (this
is possible since X ∩ E is finite). Note that #(Y ∩ E) = #(X ∩ E) + 1 and therefore, since i ̸= n(X),
we have i = n(Y ), which implies that indeed vY i ∈ R[w1], as required. At this point, since the worlds
vXi and vY i that have been reached do not have any successors, the only thing Spoiler can do is to pick
an object on either side. Suppose (a1, . . . , am) and (b1, . . . , bm) are the tuples picked so far. If Spoiler
picks am+1, Duplicator may always pick bm+1 in such a way that (i) am+1 ∈ X ⇐⇒ bm+1 ∈ Y ; (ii) if
am+1 = aj for some j ≤ m then bm+1 = bj , while if am+1 is distinct from all the previous aj , then bm+1

is distinct from all the previous bj . It is possible to achieve both (i) and (ii), since Y ∈ X guarantees
that both Y and N− Y are infinite, and so we may always pick a fresh element in either of them. The
argument is analogous if Spoiler picks bm+1. It is easy to check that this is indeed a winning strategy
for Duplicator.2

Global supervenience in inquisitive modal logic. We consider a system InqQML2 of inquisitive modal
logic obtained by adding a modality 2 to inquisitive first-order logic [4]. The language is given by the
following definition:

φ := Rx1 . . . xn | x1 = x2 | ⊥ | φ ∧ φ | φ→ φ | ∀xφ | 2φ | φ

⩾

φ | ∃∃xφ
As customary in inquisitive logic, we define ¬φ := (φ → ⊥), φ ∨ ψ := ¬(¬φ ∧ ¬ψ), ∃xφ := ¬∀x¬φ
and ?φ := φ

⩾

¬φ. The operators

⩾

and ∃∃ are called inquisitive disjunction and inquisitive existential

2The idea for this proof was developed in collaboration with Gianluca Grilletti.



EXPRESSING GLOBAL SUPERVENIENCE IN INQUISITIVE MODAL LOGIC 13

quantifier and regarded as question-forming operators. The fragment of the language without these
operators can be identified with standard modal predicate logic QML, while the fragment including

⩾

but not ∃∃ will be denoted InqQML−2 .
Models for InqQML2 are standard Kripke models with constant domains. However, following inquis-

itive semantics [6], the interpretation of InqQML2 takes the form of a recursive definition of a relation
s |=g φ called support, that holds between a set of worlds s, called an information state, and a formula
φ (relative to an assignment g). A relation of truth at a world is retrieved by defining w |=g φ as a
shorthand for {w} |=g φ. A formula φ is said to be truth-conditional if support for φ boils down to
truth at each world, in the sense that for every model M , state s, and assignment g:

s |=g φ ⇐⇒ ∀w ∈ s : w |=g φ
Thus, if a formula is truth conditional then its semantics is completely determined by its truth con-
ditions. The semantic clauses for atoms, connectives, and quantifiers are the standard ones from
inquisitive logic (see [4]). As for formulas of the form 2φ, they are stipulated to be truth-conditional
with the following truth conditions:

w |=g 2φ ⇐⇒ R[w] |=g φ
It is easy to check that every formula α of standard modal logic (i.e., without

⩾

or ∃∃) is truth-
conditional, and its truth conditions coincide with the ones given by standard Kripke semantics. On
the other hand, formulas involving inquisitive connectives are not in general truth-conditional. In
particular, the formula ∀x?Px is supported in s just in case the extension of P is the same in all worlds
in s:

s |= ∀x?Px ⇐⇒ ∀v, v′ ∈ s : Pv = Pv′

Using this fact and the semantic clauses, it is easy to check that the modal formula 2(∀x?Px→ ∀x?Qx)
is true at a world just in case Q globally supervenes on P :

w |= 2(∀x?Px→ ∀x?Qx) ⇐⇒ P ;w Q

Thus, in InqQML2 we have a (truth-conditional) formula that expresses the global supervenience of Q
on P . Given the results in the previous section, this implies that the formula 2(∀x?Px → ∀x?Qx) is
not equivalent to any formula of QML. Thus, in contrast to the propositional case, in the predicate
logic setting allowing 2 to apply to questions allows us to express (interesting) modal properties that
standard modal logic cannot express.

More generally, the claim that Q1, . . . , Qm supervene on P1, . . . , Pn is expressed by:

2(∀x?P1x ∧ · · · ∧ ∀x?Pnx → ∀x?Q1x ∧ · · · ∧ ∀x?Qmx)
Two remarks: first, formulas expressing global supervenience relations do not contain ∃∃, and so they are
in the fragment InqQML−2 . Second, such formulas take the form of strict conditionals 2(φ→ ψ) whose
antecedent and consequent are questions; more specifically, the antecedent is the question asking for
the extension of the subvenient properties, while the consequent is the question asking for the extension
of the supervenient properties.3

Meta-theoretic properties of InqQML−2 . We will show that InqQML−2 , the ∃∃-free fragment of our logic,
retains the key meta-theoretic properties of first-order logic. To show this, we build on ideas developed
in [11] and [5]. First, we show that we can inductively define for each formula φ of InqQML−2 a number
nφ such that φ is nφ-coherent in the sense that the following holds for any M, s, g:

M, s |=g φ ⇐⇒ ∀t ⊆ s with #t ≤ nφ :M, t |=g φ

Second, we define a family of translations from InqQML−2 to a suitable two-sorted first-order language
equipped with world variables. In particular, for any finite set s = {w1, . . . ,wn} of world variables, we
define a corresponding translation trs(φ) which behaves semantically like φ on information states of
size up to the number n of world variables in s. We then show that for any set Φ ∪ {ψ} of formulas
from InqQML−2 , if s is a set consisting of nψ-many world variables, we have:

Φ |=InqQML−
2
ψ ⇐⇒ trs(Φ) |=FOL trs(ψ)

where on the left we have entailment in InqQML−2 and on the right entailment in classical (two-sorted)
first-order logic. Using this connection, it is then easy to show that InqQML−2 is entailment-compact
(i.e., Φ |= ψ implies Φ0 |= ψ for some finite Φ0 ⊆ Φ) and the set of theorems of InqQML−2 is recursively
enumerable. In sum, we will argue that InqQML−2 provides a natural extension of standard modal

3In the setting of propositional modal logic, inquisitive strict conditionals have been studied in [3].
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predicate logic that, among other things, allows us to regiment reasoning about global supervenience
claims.
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AN ANDERSONIAN-KANGERIAN REDUCTION OF TERM-MODAL S5

STEF FRIJTERS

Term-modal logics (TMLs) are highly expressive first-order modal formalisms. They combine a full
first-order language with modal operators indexed with terms (i.e. variables or constants) of the lan-
guage. We denote these term-modal operators as 2θ. The addition of such operators allows one
to express complex sentences such as ‘everyone believes that they are the hero of their own story’
(∀x(2xHx)). It was recently proven that many term-modal logics that do not validate the T-axiom are
in fact fragments of standard (that is, not term-modal) first-order modal logics. It remained an open
question whether the same could be proven for term-modal logics validating the T-axiom. In this talk
we will partially answer this question by proposing a non term-modal logic AKH (based on some ideas
taken from hybrid logic) of which the term-modal version of S5, TMS5, is a fragment.

Term-modal logics were first introduced by Fitting et al. [2] (for an overview, see [6]). We will
present a simplified version of their semantics for TMS5, using constant instead of increasing domains.
ATMS5-model is a tupleM = ⟨W,A, R, I⟩, whereW is a non-empty set of worlds andA is a non-empty
set of agents. R ⊆W ×A×W is a ternary accessibility relation such that for every w,w′, w′′ ∈W and
p ∈ A: (1) ⟨w, p, w⟩ ∈ R, (2) if ⟨w, p, w′⟩ ∈ R, then ⟨w′, p, w⟩ ∈ R, and (3) if ⟨w, p, w′⟩, ⟨w′, p, w′′⟩ ∈ R,
then ⟨w, p, w′′⟩ ∈ R. Finally, I is an interpretation function assigning an element of A to every term
and an element of ℘(An) to every pair consisting of an n-ary predicate and world w ∈W . The semantic
clauses are as usual, except that where θ is a term of the language, M,w |= 2θφ iff M,w′ |= φ for all
w′ such that ⟨w, I(θ), w′⟩ ∈ R. See [3, 4] or below for more details.

Fitting et al. originally had an epistemic or doxastic reading of the term-modal operators in mind.
Thus, 2θφ is to be read as ‘θ knows that φ’ or ‘θ believes that φ’. However, given the appropriate
conditions on the accessibility relation R, there is nothing stopping us from giving the term-modal
operator other readings. For example, in term-modal deontic logic (TMDL), 2θφ is read as the
personal obligation ‘φ is obligatory for θ’ [3, 4]. It is in this deontic context that the question arose
whether TMLs can be reduced to standard (not term-modal) first-order modal logics.

It is a well-known result in deontic logic that many propositional deontic logics are reducible to,
i.e. are fragments of, alethic modal logics. This is known as the Andersonian-Kangerian reduction of
deontic logic. Anderson and Kanger proposed systems of alethic modal logic with a normative constant
G, which can be read as ‘what morality prescribes’, ‘a sanction is not applicable’, or ‘this is not a bad
state of affairs’. They then defined Oφ, ‘it is obligatory that φ’, as 2(G → φ): ‘it is necessary for
what morality prescribes that φ’. It has been proven that, for example, standard deontic logic (SDL)
is a fragment of the Andersonian-Kangerian logic K extended with the axiom 3G. In other words, one
can define a translation from formulas of SDL to formulas of the Andersonian-Kangerian logic such
that for every formula φ of SDL, φ is SDL-valid iff the translation of φ is valid in the Andersonian-
Kangerian logic [3].

In [3] and forthcoming work, similar reduction results have been proven for a number of term-modal
(deontic) logics that do not validate the T-scheme. The logics of which the term-modal logics are
a fragment have some noteworthy properties. First, they do not contain a term-modal operator, but
a standard modal operator. Secondly, these logics do not have propositional, but instead predicative
constants in their language. For example, where Q is such a constant, Qθ can be read as ‘θ is a good
person’. The formula 2θφ, ‘it is obligatory for θ that φ’, is then defined as 2(Qθ → φ): ‘it is necessary
for θ being a good person that φ’. The proof for the reduction is significantly more complex than in
the propositional case, but still follows the same basic outline.

Unfortunately, this approach does not seem generalizable to term-modal logics that validate the T-
axiom, of which TMS5 is an example. In this talk we propose a new logic, AKH, to solve this open
problem. AKH combines the ideas of Andersonian-Kangerian logics with some ideas from hybrid logic.

The language of AKH extends that of first-order logic with a universal modal operator [U], a set
of set variables SV = {X,Y, . . .} and a ↓ binder.1 More precisely, the language is defined as follows.

1Note that the set variables X,Y, . . . are not predicate variables. As the semantics will show, their interpretation is
more like that of the state variables in hybrid logic.
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16 STEF FRIJTERS

Let C = {a, b, . . .} be the set of constants and V = {x, y, . . .} be the set of variables. We let ν range
over V . Let T = C ∪ V be the set of terms (always denoting persons) and θ, θ1, . . . the metavariables
ranging over it. For each natural number n we let Pn be a set of n-ary predicate symbols and we let P
be the union of all Pn. We let P range over P. Let SV = {X,Y, . . .} be the set of set variables and let
X be the meta-variable ranging over this set. Lastly, we let φ,ψ, χ be metavariables for formulas. Our
language L is defined by the following Backus-Naur form:

φ ::= Pθ1 . . . θn | φ ∨ φ | ¬φ | [U]φ | ∀ν(φ) | X θ |↓X θ(φ).

The semantics of AKH are given by the following definitions.

Definition 1 (Models). An AKH-model is a tuple M = ⟨W,A, f, I⟩ such that:

1 W ̸= ∅ is the world-domain and A ≠ ∅ is the agent-domain
2 f : A → ℘(℘(W )) is a function such that for every p ∈ A, f(p) is a partition of W , i.e. (1) for
all distinct Γ,∆ ∈ f(p), Γ ∩∆ = ∅, and (2)

⋃
f(p) =W

3 I is an interpretation function that assigns to every θ ∈ T a p ∈ A and to every pair
⟨P,w⟩ ∈ Pn ×W an element of ℘(An) for every natural number n ∈ N

Definition 2 (Assignment function). An assignment function g : SV ×A → ℘(W ) on an AKH-model
M = ⟨W,A, f, I⟩ is a function such that for every pair ⟨X , p⟩ ∈ SV ×A, g(X , p) ∈ f(p).

Definition 3 (ν-alternative). For any ν ∈ V , M ′ = ⟨W,A, f, I ′⟩ is a ν-alternative to M = ⟨W,A, f, I⟩
iff I ′ differs at most from I in the member of A that I ′ assigns to ν.

Definition 4 (X , p-alternative). gX ,pw , the X , p-alternative for g at w, is the function defined by letting
gX ,pw (X , p) be the unique Γ ∈ f(p) such that w ∈ Γ and letting gX ,pw (Y, p′) = g(Y, p′) for all (Y, p′) ̸=
(X , p).

Definition 5 (Semantic clauses). Let M = ⟨W,A, f, I⟩ be a model and let g be an assignment on M .
Then we define:

(SC1) M, g,w |= Pθ1 . . . θn iff ⟨I(θ1), . . . , I(θn)⟩ ∈ I(P,w)
(SC2) M, g,w |= ¬φ iff M, g,w ̸|= φ
(SC3) M, g,w |= φ ∨ ψ iff M, g,w |= φ or M, g,w |= ψ
(SC4) M, g,w |= θ = κ iff I(θ) = I(κ)
(SC5) M, g,w |= [U]φ iff M, g,w′ |= φ for all w′ ∈W
(SC6) M, g,w |= (∀ν)φ iff for every ν-alternative M ′: M ′, g, w |= φ
(SC7) M, g,w |= X θ iff w ∈ g(X , I(θ))
(SC8) M, g,w |=↓X θ(φ) iff M, g

X ,I(θ)
w , w |= φ

The main idea behind the semantics is that for every p ∈ A, the function f gives a partition of
the world-domain, which corresponds with the partition induced by the accessibility relation in TMS5.
Note that because of Definition 2, our set variables are different from the state variables usually employed
in hybrid logic. In standard hybrid logic (see e.g. [1, p. 825]), every state variable is true at exactly
one world, i.e. every state variable ‘names’ a world. In contrast, in our approach there is a partition of
the set of worlds for every agent θ, and every Xθ ‘names’ a cell of this partition, i.e. Xθ is true in all
and only the worlds in one cell of the partition. The intuition behind the ↓-operator is similar to that
in hybrid logic. In hybrid logic the ↓-operator allows one to ‘name’ or reference the world (hence the
original name reference pointer) [5, 1]. In AKH, the ↓-operator allows one to ‘name’ or reference the
set of which the world is a part.

With this toolbox we can define the term-modal operator 2θ as:

2θφ :=↓Xθ([U](Xθ → φ))

This definition is in the first place meant to be a technical definition to allow for the reduction. However,
we can also give it a more intuitive reading. To do so, we stick to the epistemic reading of 2θφ, ‘θ
knows that φ’. Now several different readings of Xθ are possible. We can read Xθ as ‘the total body of
evidence of agent θ is called X’. Then ‘θ knows that φ’, 2θφ, is analyzed as ‘if we call the total body
of evidence that θ has (in this world) X, then every world where θ has exactly this body of evidence X
makes φ true’. Shortened this becomes: ‘θ’s total body of evidence necessarily implies φ’. Alternatively,
we could read Xθ as ‘all that θ knows is X’ or ‘θ’s knowledge base is called X’. There is a fruitful
philosophical discussion to be had about the proper reading of Xθ.

The reduction proposed in this talk has other upshots as well. Firstly, AKH is more expressive
than TMS5. For example, the AKH-formulas ↓ Xθ([U](Xθ ↔ φ)) and ↓Xθ([U](φ→ Xθ)) do not
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have a counterpart in TMS5, but do formalise useful statements. Given the reading proposed above,
the first formula formalises the statement ‘θ’s total body of evidence is (necessarily) equivalent to φ’
and the second formalises ‘φ necessarily implies θ’s total body of evidence’ (see also [7]). Secondly,
the reduction of TMDLs showed that term-modal logics are fragments of first-order modal logic, and
thus not as exotic as they might seem at first. The fact that this simple reduction does not seem
to work for TMS5 was surprising. Perhaps even more surprising is the fact that we seem to need a
highly unorthodox logic like AKH to reduce TMS5 to a non term-modal logic. This deserves further
investigation. Other possible paths of further research are reductions for TMLs with variable domain
semantics, or for TMLs that validate the T-axiom but are weaker than TMS5.
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THE PREDICATE MODAL LOGIC OF FORCING

CLARA ELIZABETH LIST

Abstract. We report on research in progress, supervised by Joel David Hamkins and Benedikt Löwe.
Hamkins and Löwe determined the (propositional) modal logic of forcing to be S4.2; we aim to

determine the predicate modal logic of forcing.

Forcing is a fundamental technique in set theory that was introduced in 1963 by Paul Cohen and
was first used to prove the independence of the Continuum Hypothesis in [1]. It is a method for
constructing new models of set theory by extending an already known model, the ground model, in a
carefully chosen way as to allow for a considerable amount of control over the structure and truths of
the extension model. The technique has revolutionized the field of set theory, leading to far-reaching
applications and an abundance of new models of ZFC.

This relation between a ground model and its forcing extensions has led to the notion of the set-
theoretic multiverse, a rich and complex hierarchy of set-theoretic universes. Its structure has been
studied by means of a forcing interpretation of the modalities 2 and 3. For a model M of set theory we
interpret M |= 2φ as “in every forcing extension φ holds” and M |= 3φ as “in some forcing extension
φ holds”. Further, we say that ψ(p0, ..., pn) is a ZFC-provable propositional modal principle of forcing
if it is a propositional modal sentence such that ψ(φ0, ..., φn) is provable for all set-theoretic sentences
φ0, ..., φn. The forcing interpretation of 2 and 3 was first introduced by Hamkins in [11], where the
relative consistency of ZFC together with the maximality principle32p→ 2p was shown. Subsequently,
in [12], a new area of research, the modal logic of forcing, was introduced by Hamkins and Löwe, and
the propositional modal principles of forcing that are provable from ZFC were determined to precisely
match the modal logic S4.2. This was followed by several works by various authors which further
established the modal account on forcing, among them [11, 18, 16, 8, 9, 19, 21, 7, 6, 13, 10, 14, 23, 20].
The techniques developed for the study of modal logics of multiverses have been fruitfully used in other
structural areas of mathematics, cf., e.g., [2, 15, 22, 3].

In the presentation, I shall report on an ongoing project to extend the results by Hamkins & Löwe
to determine the predicate modal logic of forcing. More specifically, let L3 be the first-order modal
language containing symbols for infinitely many predicates Pi of each arity and infinitely many variables
x, y, z, ..., and let formulas of L3 be closed under Boolean connectives, modal operators and quantifiers.
Where L∈ is the language of set theory, we can now define what it means to be a forcing translation.

Definition. A forcing translation is a function σ, mapping formulas ψ of L3 to formulas ψσ of L∈,
defined recursively as follows, where the φi are L∈ formulas with as many free variables as the arity of
the respective predicates Pi.

Pi(x̄)
σ ≡ φi(x̄)

(ψ0(x̄) ∧ ψ1(ȳ))
σ ≡ ψ0(x̄)

σ ∧ ψ1(ȳ)
σ

(¬ψ(x̄))σ ≡ ¬ψ(x̄)σ

(∀xψ(x, ȳ))σ ≡ ∀x ψ(x, ȳ)σ

(2ψ(x̄))σ ≡ in every forcing extension ψ(x̄)σ

In other words, σ is a forcing translation if it maps ψ to a substitution instance of ψ where predicates
Pi are replaced by formulas φi having the same number of arguments such that each instance of φi
takes the free variables that Pi would have taken in the same instance in the original formula.

Definition. A predicate modal assertion ψ is a ZFC-provable principle of forcing if for all forcing
translations σ, ZFC ⊢ ψσ.

The goal of our project is to determine the ZFC-provable predicate principles of forcing. An example
of such a principle is the converse Barcan formula

2∀xP (x) → ∀x2P (x),
18
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which is always valid in a Kripke model with inflationary domains. Indeed, if ∀xφ(x) is true in every
forcing extension, then in particular, φ(x) will be true in every forcing extension for every set x in the
ground model, precisely because x continues to exist in the extension. In fact, this formula is even
provable from the axioms and rules of first-order logic together with those of the smallest normal modal
logic K (hence is included in QS4.2 below).

It turns out that the answer to our main question might differ considerably depending on whether
or not our language contains equality: we conjecture the answer to be different for the cases without
and with equality.

Definition. We let QS4.2 be the smallest set of formulas containing

(1) axioms of first-order logic without equality and
(2) ψ(χ0, ..., χn−1) whenever ψ(p0, ..., pn−1) is a formula of propositional S4.2, where the χi are

formulas of L3 without equality,

and closed under the rules Modus Ponens, Necessitation, Universal Instantiation and Universal Gen-
eralisation. Further, we let QS4.2= be defined as above but include equality in both points (1) and
(2).

Conjecture 1. The ZFC-provable principles of forcing without equality are exactly those sentences in
QS4.2.

Conjecture 2. The ZFC-provable principles of forcing with equality are exactly those sentences in the
smallest set of formulas containing

(1) the formulas in QS4.2=,
(2) Necessary Identity (NI)

∀x∀y(x = y ⇐⇒ 2x = y),

(3) Necessary Non-identity (NNI)

∀x∀y(x ̸= y ⇐⇒ 2x ̸= y),

(4) and Infinite Domains (InfD), which is the set of sentences

{∃x0...∃xn
∧
i̸=j

xi ̸= xj | n ∈ ω},

and is closed under the rules Modus Ponens, Necessitation, Universal Instantiation and Universal Gen-
eralisation.

The approach we aim to follow in proving these conjectures is based on the method developed in
[12] and further specified in [14]. As in the propositional case, the lower bounds (i.e., showing that
every formula conjectured to be a provable principle is a provable principle) are easy to verify and we
can readily do so. The upper bounds (i.e., showing that no other formulas are provable principles) are
considerably harder. In the propositional case, this is done by so-called control statements that we can
determine for modal logics that are characterised by a class of finite frames (cf. [14, § 4]). Unfortunately,
neither of the conjectured predicate modal logics have the finite frame property, so we must adjust this
idea.

In the talk, I shall give some details of the techniques that we plan to employ to solve this technical
problem and approach the proof of the two conjectures. This talk reports on work supervised by Joel
David Hamkins and Benedikt Löwe.
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[3] S. Berger, A. C. Block, and B. Löwe, ‘The modal logic of abelian groups’, submitted (2022).

[4] P. Blackburn, M. de Rijke and Y. Venema, Modal Logic. Cambridge Tracts in Theoretical Computer Science, Vol.
53 (Cambridge University Press, Cambridge, 2001).
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SATISFIABILITY PROBLEM FOR THE BUNDLED FRAGMENTS OF FIRST

ORDER MODAL LOGIC

MO LIU, ANANTHA PADMANABHA, R. RAMANUJAM, YANJING WANG

In first-order modal logic (FOML), it is well-known that finding decidable fragments of FOML is
hard. There are a very few fragments like the monodic fragments ([WZ01]) that are decidable. 1 When
we bundle quantifiers and modalities together (as in ∃x2, 3∀x, etc.), we get new logical operators
whose combinations produce interesting fragments of FOML without any restriction on the arity of
predicates, the number of variables, or the modal scope. It has been shown that when the existential
quantifier and a box modality were always bundled together to appear as a single quantifier-modality
pair (∃x2), the resulting fragment of FOML is decidable ([Wan17]). This fragment is motivated by
epistemic operators that go beyond the classical know-that, and captures the logic of many knowing-wh
expressions such as knowing what, knowing how, knowing why, and so on, e.g., knowing how to achieve
φ is rendered as there exists a method x such that the agent knows that x can guarantee φ ([Wan18].

The motivation for ‘bundling’ is to restrict the occurrences of quantifiers using modalities. For
instance, allowing only formulas of the form ∀x2α is one such bundling. On the other hand, we could
also have 3∃yα. Thus, there are many ways to ‘bundle’ the quantifiers and modalities. We call these
the ‘bundled operators/modalities’. The following syntax defines all possible bundled operators of one
quantifier and one modality. Note that we exclude equality, constants, and function symbols from the
syntax.

Definition 1 (Bundled-FOML syntax). Given a countable set of predicates P and a countable set of
variables Var, the bundled fragment of FOML is the set of all formulas constructed by the following
syntax:

α ::= P (x1, . . . , xn) | ¬α | α ∧ α | 2α | ∀x2α | ∃x2α | 2∀xα | 2∃xα
where P ∈ P has arity n and x, x1, . . . , xn ∈ Var.

We denote AB (to mean forAll-Box) to be the language that allows only atomic formulas, negation,
conjunction, 2α and ∀x2α (dually ∃x3α) formulas. Similarly, we have EB(Exists-Box), BA(Box-forAll)
and BE(Box-Exists) to mean the fragments that allows formulas of the form ∃x2α, 2∀xα and 2∃xα
and their duals respectively.

Definition 2 (FOML structure). An increasing domain model for FOML is a tuple M = (W,D, δ,R, ρ)
where W is a non-empty countable set called worlds; D is a non-empty countable set called domain;
R ⊆ (W ×W) is the accessibility relation. The map δ : W 7→ 2D assigns to each w ∈ W a non-empty
local domain set such that whenever (w, v) ∈ R we have δ(w) ⊆ δ(v) and ρ : (W ×P) 7→

⋃
n
2D

n

is the

valuation function, which specifies the interpretation of predicates at every world over the local domain
with appropriate arity. The model M is said to be a constant domain model if for all w ∈ W we have
δ(w) = D. When δ(w) = δ(v) for all w, v ∈ W, we call M is a constant domain model.

Definition 3 (FOML semantics). Given an FOML model M = (W,D, δ,R, ρ) and w ∈ W, and σ
relevant at w, for all FOML formulas α define M, w, σ |= α inductively as follows:

M, w, σ |= P (x1, . . . , xn) ⇔ (σ(x1), . . . , σ(xn)) ∈ ρ(w,P )
M, w, σ |= ¬α ⇔ M, w, σ ̸|= α
M, w, σ |= α ∧ β ⇔ M, w, σ |= α and M, w, σ |= β
M, w, σ |= ∃xα ⇔ there is some d ∈ δ(w) such that M, w, σ[x 7→d] |= α
M, w, σ |= 2α ⇔ for every u ∈ W if (w, u) ∈ R then M, u, σ |= α

Note that in bundled fragments such as EB, a modality comes right after a quantifier as in ∃x2φ,
thus ∃x(2φ ∧ 3ψ) is not in the fragment EB whatever φ and ψ are. We may weaken this condition
to allow formulas of the form ∃xβ where β is a boolean combination of atomic formulas and modal
formulas. Moreover, we can allow a quantifier alternation of the form ∃x1 · · · ∃xn ∀y1 · · · ∀ym β. As a
result, we obtain loosely bundled fragment (LBF):

1Monodic fragment requires that there be at most one free variable in the scope of any modal subformula.
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Domain ∀2 ∃2 2∀ 2∃ Upper/ Lower Bound

Constant

✓ ⋆ ⋆ ⋆
Undecidable

⋆ ⋆ ✓ ⋆
✗ ✓ ✗ ✗ PSpace-complete
✗ ✗ ✗ ✓

No FMP
✗ ✓ ✗ ✓

Increasing

✓ ✗ ✗ ✗
✗ ✓ ✗ ✗ PSpace-complete
✗ ✗ ✓ ✗
✗ ✗ ✗ ✓ ExpSpace/ PSpace

✓ ✓ ✗ ✗
ExpSpace/NexpTime

✗ ✗ ✓ ✓
⋆ ✓ ✓ ⋆ Undecidable
✗ ✓ ✗ ✓ No FMP
✓ ✓ ✗ ✓ Undecidable
✓ ✗ ✓ ✓

ExpSpace/ NexpTime
loosely bundled

Figure 1. Satisfiability problem classification for combinations of bundled fragments.
(⋆ means that the result holds with or without the presence of the corresponding
bundle.)

Definition 4 (LBF syntax). The loosely bundled fragment of FOML is the set of all formulas constructed
by the following syntax of α:

ψ ::= P (z1, . . . zn) | ¬P (z1, . . . zn) | ψ ∧ ψ | ψ ∨ ψ | 2α | 3α
α ::= ψ | α ∧ α | α ∨ α | ∃x1 . . . ∃xk∀y1 . . . ∀yl ψ

where k, l, n ≥ 0, P ∈ P has arity n and x1, . . . xk, y1, . . . yl, z1, . . . , zn ∈ Var.

Besides EB, the bundled fragment ABEB is still decidable over increasing domain models, though it
was later shown that there was a price to be paid in terms of complexity ([PRW18]). This opens up
a range of questions: what about other bundles, such as BE or BA and combinations thereof? Which
of these distinguishes constant domain and increasing domain models? What about further bundles
such as ∀x∃y2 etc.? Can we identify the borderline between decidability and undecidability in this
terrain? In [LPRW22] we consider all the bundles and classify them as: decidable ones, undecidable
ones, and for those without definite answers yet, we show they lack the finite model property. Moreover,
the LBF generalizes the bundling idea to what we believe to be the strongest yet decidable bundled
fragment. The results are concluded in the Figure 1. Noted that constant domain and increasing
domain interpretations make a significant difference.

We provide an informal guide to our latter results according to the expressivity of the bundled
fragments. If a fragment can express, modulo some modal padding in a restricted way, both ∀x∃yα and
∀x∀y∀zα in some form (like EBBA and ABEBBE), we can then prove that such a fragment is undecidable.
If a fragment can express the essence of ∀x∃yα but not ∀x∀y∀zα (like EBBE and BE over constant domain
models) then we will prove that such fragments do not have finite model property. Finally, if a fragment
cannot express the essence of ∀x∃yα (like ABEBBA and LBF) then we will prove that it satisfies finite
model property and give a tableau procedure.
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MEZHIROV’S GAME FOR INTUITIONISTIC LOGIC AND ITS VARIATIONS

IVAN O. PYLTSYN

Game semantics allows us to look at basic logical concepts from another side. This approach to logic
has a long history, there are plenty of different types of games: provability games, semantic games,
etc [10,11]. And there is an interesting type of provability games called Mezhirov’s game proposed by
Iliya Mezhirov for intuitionistic logic of propositions (IPC) and Grzegorczyk modal logic (Grz) [1,2].
This idea was developed in many different directions; for example, in 2008 in the joint paper with
N. Vereschagin a game semantics was given for affine and linear logic [3]. Independently G. Japaridze
worked on game semantics for linear logic [4]. Mezhirov’s games for minimal propositional logic (MPC),
logic of functional frames (KD!) and logic of serial frames (KD) were introduced in 2021 by A. Pavlova
[5].

Mezhirov’s game semantics for intuitionistic logic is interesting because of its simplicity and strong
connection with Kripke semantics and Kripke models. The game between Opponent and Proponent
starts with a formula φ. And Proponent has a winning strategy iff φ is an intuitionistic tautology. The
connection between the game and Kripke models manifests itself in building strategy for Opponent from
a Kripke model (Opponent ”walks” from one world of a model to another) and in the reconstruction of
a model from Opponent’s winning strategy (in which there exists a world where φ is false). And these
procedures are connected to each other.

In my study, I try to generalize Mezhirov’s result in two directions: to generalize to intuitionistic logic
of predicates (introduce a game between Opponent and Proponent with at least the same connection
with Kripke models or with special classes of them) and to the case of a connection not only between
the game and tautologies of logic (⊨ φ), but also between the game and entailment from infinite sets of
formulas (T ⊨ φ).

The purpose of building such game was to get a theorem of kind ”Proponent has a winning strategy
in a special starting position (easily defined using an arbitrary set of formulas O0 and formula φ) iff
O0 ⊨ φ”, where ⊨ is the semantic consequence defined by some class of predicate Kripke frames (φ
is a semantic consequence of T in some class C of predicate Kripke frames iff for each Kripke model,
based on a frame from the class C, if all formulas from T is true everywhere in this model, then φ
is true in each world of the model). I initially thought about just logic of all Kripke models, i.e. it
would be a game for intuitionistic logic of predicates directly. But it turned out that in such case
some fundamental problems arise and it is natural to expand the logic (to use a smaller class of Kripke
frames). Moreover, description of such variations (not just logic of all Kripke models) could be useful,
since, in general, Kripke semantics for superintuitionistic predicate logic is rather weak (e.g. [9]). And
I managed to get a description (based on the game I built) for several variations. So let me describe
the rules of the game.

Let Ω be the elementary intuitionistic language (without function symbols; language will contain ⊥,
and the set of logical connectives will be {→,∧,∨}, where ¬A will be considered as A→ ⊥), and we will
use Kripke models for intuitionistic logic of predicates [6,7] (I will call sets of constants in each world
”individual domains” (or ”the set of objects”) and use symbol ∆). For the set of formulas Γ and set of
objects (constants) ∆ let F(Γ,∆) = {P [c1, ..., cn]|P [x1, ..., xn] is a subformula of some formula from Γ
and free variables of it are only x1, ..., xn; ci ∈ ∆} (so F in some ways is a set of all ”subformulas” of
formulas from Γ). Players Opponent and Proponent will be associated with their sets O and P. The
position in the game is a triple C = (O,P,∆). In each position C: O and P are subsets of F(Γ,∆),
where ∆ is taken from C (and can only expand in the game process) and Γ is fixed at the beginning
of the game and does not change until the end and equals to O0 ∪ {φ} (where C0 = (O0, {φ},∆0) is
a starting position; ∆0 is an exact set of all constants contained in formulas from Γ). Proponent moves
by adding new formulas from F to P, Opponent moves by expanding ∆ (he can add nothing to ∆ if he
wants; and he can add to ∆ not just constants from Ω) and than adding new formulas from F to O.

The only thing left to define is who must move in a position C. To do that, let us firstly define the
notion of truth relation ⊩ in C for formulas from F(Γ,∆):
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C ⊮ ⊥
C ⊩ A[c1, ..., cn] ⇌ A[c1, ..., cn] ∈ O
C ⊩ φ ⋆ ψ ⇌ φ ⋆ ψ ∈ O ∪ P and (C ⊩ φ) ⋆ (C ⊩ ψ), ⋆ ∈ {→,∧,∨}
C ⊩ qxP [x] ⇌ qxP [x] ∈ O ∪ P and qα ∈ ∆(C ⊩ P [α]), q ∈ {∃,∀}

where A is a predicate symbol, arity(A) = n, ci ∈ ∆, P - formula with only one free variable. A star
in the case of (C ⊩ φ) ⋆ (C ⊩ ψ) means logical meta connective and behaves like a classical connective
(the same for q in qα ∈ ∆).

Let us call a formula from P Proponent’s mistake if it is false in the current position (the same for O
and Opponent). If Opponent has no mistakes but Proponent has, then Proponent moves. Otherwise,
Opponent must move. And if after a turn of a fixed player he must move again, he loses. If the game
goes on infinitely (each player manages to pass a turn to the other player each turn), Proponent wins;
also let us call formulas from O ∪ P marked formulas.

Now let us consider several examples of the game. In the first game C0 = (∅, {φ},∅), where
φ = ∀y∃x(P [x] → P [y]). Because ∆ is empty, there are no formulas in F of the form ∃x(P [x] → P [c]),
so Proponent has no mistakes, it’s Opponent’s turn. It is enough for him to just expand ∆, and it will
be Proponent’s turn. Proponent takes all formulas of the kind ∃x(P [x] → P [c]) and P [c] → P [c] and
passes turn to Opponent. He will do the same (expand ∆) and the game goes on infinitely.

In the second game C0 = (∅, {φ}, {c}), where φ = ¬P [c] → ¬∃xP [x]. φ is an implication, both
sending and conclusion of it is not marked, therefore false in the current position. So φ is true, it’s
Opponent’s turn. He expand ∆ to {c, α} and add to O formulas ¬P [c], ∃xP [x], P [α]. He might not
add ∃xP [x] to O and turn would still be passed to Proponent. But in this case Proponent would have
an opportunity to add to P ¬∃xP [x] and make this formula true in position (because ∃xP [x] would
not be marked), and Opponent still would have needed to add ∃xP [x]. After that, Proponent will not
be able to pass turn to Opponent, therefore, he will lose.

In the third game let C0 = (∅, {φ},∅), where φ = ∀x[(P [x] → ∀xP [x]) → ∀xP [x]] → ∀xP [x]
(Casari’s schema or Casari’s formula [8]). Again φ is an implication, it’s Opponent’s turn. He needs
to make sending false, so he expand ∆ and add to O all formulas (P [α] → ∀xP [x]) → ∀xP [x] and
sending of the φ: ∀x[(P [x] → ∀xP [x]) → ∀xP [x]]. Than Propopent creates mistakes for Opponent by
adding to P all formulas (P [α] → ∀xP [x]). To get rid of mistakes, Opponent needs to add all P [α],
and than Proponent just add to P ∀xP [x]. The only thing Opponent can do now is to expand ∆ and
repeat everything again. As we can see, this is the winning strategy for Proponent, but φ is not true in
all Kripke models. This formula will give us a useful class of Kripke frames (class of all Kripke frames
in which Casari’s formula is valid; let us call it Casari’s class (Kripke frame is from Casari’s class iff
in every countable sequence of worlds ωi their individual domains ∆i remain finite and stabilize; so
class of Casari’s Kripke frames includes all Noetherian Kripke frames)).

It seems to me that, informally, this game (and Mezhirov’s game for propositional intuitionistic
logic) could be understood as follows: Opponent is trying to build a theory that belies Proponent’s
assertion that φ follows from O0 (or, in the case of O0 = ∅, is trying to build a theory that shows that
Proponent’s thesis (φ) is not valid in general). And this theory must be coherent (Opponent must have
no mistakes), otherwise his approach is considered unsuccessful.

While getting closer to results, I should mention that there was some interest in considering variation
of the game with only finite ∆ (and Opponent can expand ∆ adding only finite number of objects)
because of better connection with Kripke models, so there appeared results for two variations of the
game (described one (let us call it infinite) and the same but with finite ∆ (finite variation)).

Theorem 1. In the infinite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with possibly infinite O0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all Noetherian Kripke frames.

Theorem 2. In the infinite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with only finite O0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all Casari’s Kripke frames.

These theorems lead, inter alia, to the fact that logics of Noetherian Kripke frames and of Casari’s
Kripke frames have the same weak entailment (entailment from finite sets of formulas). Similar results
we can see for the finite variation.

Theorem 3. In the finite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with possibly infinite O0, but with only finite ∆0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all
Noetherian Kripke frames with only finite individual domains ∆ in each world.
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Theorem 4. In the finite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with only finite O0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all Casari’s Kripke frames with
only finite individual domains ∆ in each world.

Theorem 5. In the finite variation, Proponent has a winning strategy in position C0 = (O0, {φ},∆0)
(with only finite O0) iff O0 ⊨ φ, where ⊨ is the entailment in logic of all finite Kripke frames with only
finite individual domains ∆ in each world.

As we can see, in the case of only finite individual domains in each world, logics of Noetherian Kripke
frames, of Casari’s Kripke frames and of finite Kripke frames have the same weak entailment.

As I mentioned, the main goal of this study was to find a game with strong connection with Kripke
models. Partially, this has been achieved (proofs for all 5 theorems contain building a strategy for
Opponent by ”walking” from one world of a model to another); in addition, some connections have been
established between weak entailment of logics of some classes. But the next step would be to find a triple:
a class of Kripke frames, a game semantics and a calculus (probably, an infinitary sequent calculus) with
the same strong entailment (entailment from not only finite, but from any sets of formulas). In this
case, it is better to take a simpler class of Kripke frames in terms of the possible calculus for this class.
So, because of this, Casari’s class looks better than the Noetherian class. Therefore, I am trying right
now to change rules of the game to get the same strong entailment as in logic of all Kripke frames from
Casari’s class.
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KRIPKE (IN)COMPLETENESS OF PREDICATE MODAL LOGICS WITH

AXIOMS OF BOUNDED ALTERNATIVITY

VALENTIN SHEHTMAN AND DMITRY SHKATOV

1. Introduction and preliminaries

The Kripke frame semantics is a valuable tool for the analysis of propositional modal logics. Despite
by now well known phenomenon of propositional Kripke incompleteness, examples of Kripke incom-
plete propositional modal logics are rather contrived. By contrast, in predicate modal logic, Kripke
incompleteness is common, and the precise boundaries of the usefulness of Kripke frame semantics are
not as well understood as for propositional logics. At least in part, this situation arises since canonical
models for predicate modal logics are not as well-behaved as canonical models for propositional logics.
Even in cases when Kripke completeness can be obtained, a suitable Kripke frame is not canonical
(in other words, canonicity is not as common in predicate modal logic as it is in propositional modal
logic).

Here, we investigate both Kripke completeness and Kripke incompleteness in the context of log-
ics QAltn, which are minimal modal predicate logics containing the propositional axiom of bounded
alternativity (here, n ⩾ 1),

altn = ¬
∧

0⩽i⩽n

3(pi ∧
∧
j ̸=i

¬pj),

corresponding to the Kripke frame condition |R(w)| ⩽ n whenever w ∈ W (‘n-alternativity’), as well
as their minimal extensions containing axioms T (‘reflexivity’) and 4 (‘transitivity’). We show, using
selective submodels [2], that both QAltn and QTAltn are strongly Kripke complete and, using Kripke
bundle semantics [1, Chapter 5], that logics QK4Altn and QS4Altn are Kripke incomplete.1

We work with the language containing a countable supply of predicate letters of every arity, Boolean
connectives, quantifier symbols, and a unary modal operator □. The definition of a formula is standard.
We also use the abbreviation □⩽nA :=

∧n
i=0 □

iA. By a predicate modal logic we mean a set of formulas
including the classical predicate logic QCL, the minimal propositional modal logic K, and closed under
Substitution, Modus Ponens, Generalization, and Necessitation. If Λ is a propositional modal logic, the
minimal predicate modal logic including Λ is denoted by QΛ.

We briefly recall the Kripke frame semantics for predicate logics. A Kripke frame is a pair (W,R)
where W ̸= ∅ and R ⊆ W ×W . A predicate Kripke frame is a tuple F = (F,D) where F = (W,R) is
a Kripke frame and D = {Du | u ∈W} is a system of non-empty domains satisfying the condition that
Du ⊆ Dv whenever uRv (‘expanding domains’). A model over a predicate Kripke frame F is a pair
M = (F , ξ), where ξ is a family (ξu)u∈W of maps such that ξu(P

n) ⊆ Dn
u , for each n-ary predicate

letter Pn. The truth relation between models M , worlds u, and Du-sentences A (a Du-sentence is
obtained from a formula by substituting elements of Du for parameters of the formula) is standard;
in particular,

• M,u |= P (a1, . . . , an) if (a1, . . . , an) ∈ ξu(P );
• M,u |= □A(a1, . . . , an) if M, v |= A(a1, . . . , an) whenever v ∈ R(u).

A formula is true in a model if its universal closure is true at every world of the model. A formula is
valid on a predicate Kripke frame if it is true in every model over the predicate frame.

If C is a class of predicate Kripke frames, the set of formulas valid on C is a modal predicate logic,
denoted by L(C ). If there exists a class C of predicate Kripke frames such that L = L(C ), the logic
L is Kripke complete; if, in addition, every set of L-consistent formulas is satisfiable in a model over
a predicate Kripke frame validating L, then L is strongly Kripke complete.

1Strong completeness of logics QAltn was claimed, without proof, in [3]; here, we give a detailed proof.
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2. Kripke completeness of QAltn and QTAltn

Throughout this section, unless stated otherwise, L is a predicate modal logic. For completeness
proofs, we use languages extended with a set of constants of arbitrary cardinality. We assume, for now,
a fixed universal set S of constants of infinite cardinality κ. A set C ⊆ S of constants is S-small if
|S −C| = κ. If C is a set of constants, a C-sentence is a sentence possibly containing constants from C.
The set of all C-sentences is denoted by L(C). A theory is a set of C-sentences, for some C ⊆ S. If Γ
is a theory, the set of constants occurring in Γ is denoted by CΓ; the set of all CΓ-sentences is denoted
by L(Γ).

A theory Γ is Henkin if, for every sentence ∃xA(x) ∈ L(Γ), there exists c ∈ CΓ such that
∃xA(x) → A(c) ∈ Γ. A maximal L-consistent theory is called L-complete. It can be easily checked that
every L-complete Henkin theory Γ has the existence property: ∃xA(x) ∈ Γ ⇐⇒ (∃ c ∈ CΓ)A(c) ∈ Γ.

Let L be a first-order modal logic. An (L,S)-place (simply L-place if S is clear from the context or
immaterial) is an L-complete Henkin theory with an S-small set of constants.

Lemma 1. Every L-consistent theory with an S-small set of constants is included into some (L,S)-place.

The canonical predicate Kripke frame for L w.r.t. S is the tuple FS
L := (W S

L , R
S
L, D

S
L), where W S

L is
the set of all (L,S)-places; RS

L is the canonical accessibility relation on W S
L defined as follows: ΓRS

L∆
if □−Γ ⊆ ∆; and DS

L : W
S
L → 2S is the map defined by DS

L(Γ) = CΓ. The canonical Kripke model for
L w.r.t. S is the tuple M S

L := (FS
L , ξ

S
L), where FS

L is the canonical predicate Kripke frame and ξSL is
the canonical valuation defined by(ξSL)Γ(P

m
k ) := {c ∈ CmΓ | Pmk (c) ∈ Γ}.

Theorem 2. For every Γ ∈ W S
L and A ∈ L(CΓ),

MS
L,Γ |= A ⇐⇒ A ∈ Γ.

From now on the universal set of constants S is no longer fixed; from now on, it is a parameter.
A logic L is canonical if FS

L |= L, for every universal set S of constants. As in propositional logic, every
canonical logic is strongly Kripke complete, but the examples of predicate canonical logics are scarce
(see [1, Section 6.1]). In particular, it can be shown that logics QAltn and QTAltn are not canonical
(proof idea: every world Γ containing 3⊤ in canonical models for these logics sees infinitely many words
containing constants outside of CΓ). Nevertheless, these logics, as we next show, are Kripke complete.
To prove this, we use the method of selective submodels [2, Section 6] resembling selective filtration in
propositional modal logic and Tarski-Vaught test in classical model theory.

A Kripke model M ′ = (W ′, R′, D′, ξ′) is a weak submodel of a Kripke model M = (W,R,D, ξ)
if W ′ ⊆ W , R′ ⊆ R, and, for every w ∈ W ′, both Dw = D′

w and ξ′w = ξw. If, additionally,
M,w |= 3A =⇒ ∃u ∈ R′(w)M,u |= A, for every w ∈ W ′ and every Dw-sentence A, then M ′ is a
selective weak submodel of M .

Lemma 3. Let M ′ = (W ′, R′, D′, ξ′) be a selective weak submodel of M = (W,R,D, ξ). Then
M,w |= A ⇐⇒ M ′, w |= A, for every w ∈W ′ and every Dw-sentence A.

A quasi-canonical model for a logic L is a selective weak submodel of MS
L (for some S). A logic L

is quasi-canonical if, for every L-place Γ, there exists a quasi-canonical model over a predicate frame
containing Γ and validating L. By Theorem 2 and Lemma 3, if M ′ = (W ′, R′, D′, ξ′) a quasi-canonical
model for L, then, M ′,Γ |= A ⇐⇒ A ∈ Γ, for every Γ ∈W ′. Hence, due to Lemma 1,

Theorem 4. Every quasi-canonical predicate modal logic is strongly Kripke complete.

Theorem 5. Let L = QAltn or L = QTAltn, for some n ⩾ 1. Then L is quasi-canonical and, hence,
strongly Kripke complete.

Proof. Let ML = (WL, RL, DL, ξL) be a canonical model for L, and let Γ0 ∈ WL. We obtain a selective
submodel M of ML over a frame validating L and containing Γ0. First, we prove the following:

Lemma 6. Let Γ ∈ WL and XΓ := {∆ | ∆ is L-complete & L(∆) = L(Γ) & □−Γ ⊆ ∆}. Then
|XΓ| ⩽ n.

Proof. Suppose that ∆0, . . . ,∆n are distinct theories from XΓ. Since these theories are L-complete and
L(∆0) = . . . = L(∆n) = L(Γ), for each i, j ∈ {0, . . . , n} with i ̸= j, there exists Aij ∈ L(Γ) such that
Aij ∈ ∆i, but Aij /∈ ∆j . For every i ∈ {0, . . . , n}, let Bi =

∧
j ̸=i

(Aij ∧ ¬Aji). Then, Bi ∈ ∆j iff i = j.

Hence,
∧

0⩽i⩽n
3(Bi ∧

∧
j ̸=i

¬Bj) ∈ Γ. But ⊢QAltn ¬(
∧

0⩽i⩽n
3(Bi ∧

∧
j ̸=i

¬Bj)). Thus, Γ is L-inconsistent,

contrary to the assumption. □
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We now proceed with the proof of the theorem, distinguishing two cases.
Case L = QAltn: We define the set W of worlds and the accessibility relation R of the model M

by recursion. Set W0 = ∅, W1 = {Γ0}, and R0 = R1 = ∅. Suppose the sets W0, . . . ,Wk and the
relations R0, . . . , Rk, for some k < ω, have been defined. To define Wk+1 and Rk+1, consider, for each
Γ ∈ Wk −Wk−1, the set XΓ defined in Lemma 6. By Lemma 6, |XΓ| ⩽ n. By Lemma 1, for each
∆ ∈ XΓ, there exists ∆′ ∈ WL such that ∆ ⊆ ∆′; let Y Γ be the set containing exactly one such
∆′ ∈ WL for each ∆ ∈ XΓ. Then, |Y Γ| ⩽ n. By Existence Lemma and Lindenbaum lemma, for every
sentence A, if 3A ∈ Γ, then (∃∆0 ∈ XΓ)A ∈ ∆. Hence,

3A ∈ Γ =⇒ (∃∆ ∈ Y Γ)A ∈ ∆. (1)

Set Wk+1 = Wk ∪
⋃

Γ∈Wk−Wk−1

Y Γ and Rk+1 = Rk ∪
⋃

Γ∈Wk−Wk−1

(
{Γ} × Y Γ

)
. As we have seen, if

Γ ∈ Wk − Wk−1, then |Y Γ| ⩽ n, and so |Rk+1(Γ)| ⩽ n. Observe that Rk+1 ⊂ RL. Lastly, let
W =

⋃
k<ω

Wk and R =
⋃
k<ω

Rk. Then, by (1),

∀Γ ∈W ∀A ∈ L(Γ)
(
3A ∈ Γ =⇒ (∃∆ ∈ R(Γ))A ∈ ∆

)
. (2)

By definition of R and Lemma 6, |R(Γ)| ⩽ n, for each Γ ∈ W . Also, R ⊆ RL. Hence, (W,R) |= altn.
Lastly, let M := ML ↾ W . Then, (W,R,D) |= L. Thus, M is a submodel of ML over an L-frame
containing Γ0. By (2) and Theorem 2, M is a selective submodel of ML.

Case L = QTAltn: The set W and the relation R are again defined by recursion. We set
W0 = {Γ0}, R0 = R1 = {(Γ0,Γ0)}. We need to make sure that every relation Rk, and hence their
union R, is reflexive. Suppose Rk is reflexive, for some k < ω. Since RL is reflexive, it follows that
Γ ∈ XΓ. We pick the L-complete set Γ′ ∈ Y Γ so that Γ′ = Γ. Then, Rk+1 is reflexive. Hence, R is
reflexive, and so and (W,R,D) |= L. □

3. Kripke incompleteness of QK4Altn and QS4Altn

To prove Kripke incompleteness of logics QK4Altn and QS4Altn, we use the semantics of Kripke
bundles [1, Chapter 5]. A Kripke bundle is a tuple F = (F,D, ρ), where F = (W,R) is a Kripke
frame, D = {Du | u ∈ W} is a family of non-empty disjoint domains, and ρ = {ρuv | (u, v) ∈ R} is
a family of inheritance relations ρuv ⊆ Du × Dv satisfying the constraint that ρuv(a) ̸= ∅ whenever
uRv and a ∈ Du. Models over Kripke bundles are defined analogously to models over Kripke frames.
The truth clause for formulas beginning with □ is as follows: M,u |= □A(a1, . . . , an), with distinct
a1, . . . , an ∈ Du, if

∀v ∈ R(u)∀b1 ∈ ρuv(a1) . . . ∀bn ∈ ρuv(an)M, v |= A(b1, . . . , bn).

A formula is true in Kripke bundle model if its universal closure is true at every world of the model.
A formula A is strongly valid in a Kripke bundle F (notation: F ⊩ A) if every substitution instance of
A is true in every model over F. The following is well known [1, Proposition 5.2.12]:

Proposition 7. Let F be a Kripke bundle. Then the set {A | F ⊩ A} is a modal predicate logic.

With every Kripke bundle F = (W,R,D, ρ), we associate a family {(Wn, Rn) | n < ω} of Kripke
frames: put D0 := W and R0 := R; put D1 :=

⋃
{Du | u ∈ W} and R1 :=

⋃
{ρuv | uRv}; for every

n > 1, put Dn :=
⋃
{Dn

u | u ∈W} and

Rn := {(a, c) ∈ Dn ×Dn | ∀j ajR1bj and ∀j, k (aj = ak ⇒ bj = bk)}.
The following is well known [1, Proposition 5.3.7]:

Proposition 8. Let F be a Kripke bundle and A a modal propositional formula. Then, F ⊩ A iff
Fn |= A, for every n < ω.

Theorem 9. Let L = QK4Altn or L = QS4Altn, for some n ⩾ 1. Then, L is Kripke incomplete.

To prove incompleteness of QK4Altn, we make use of the formula ∀ref := ∀x (□P (x) → P (x)). We
show that every Kripke predicate frame validating QK4Altn validates An := 3⩽n+1⊤ → 3∀ref , but
An /∈ QK4Altn.

Suppose that F = (W,R,D) |= QK4Altn, and so R is transitive and n-alternative. Let M be
a model over F and u0 ∈ W . Assume that M,u0 |= 3⩽n+1. Then, there exist u1, . . . , un+1 ∈ W such
that u0Ru1R . . . Run+1. Since R is n-alternative, there exist k, j ⩽ n+ 1 such that k ̸= j and uk = uj .
But then uk is reflexive, and so M,uk |= ∀ref . Hence, M,u0 |= 3∀ref and so M,u0 |= An.
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To show that A /∈ QK4Altn, in view of Proposition 7, it suffices to obtain a Kripke bundle
strongly validating QK4Altn, but refuting A. Define W = {u}, R = {(u, u)}, Du = {a, b}, and
ρ = {(a, b), (b, b)}. Put F0 = (W,R,D, ρ). It should be clear that F0 is a Kripke bundle. To see
that F0 ̸⊩ A, consider the model M0 = (F0, ξ) with ξu(P ) = {b}. Since M0, u |= P (b), the world u
is reflexive, and b is the unique inheritor of a, it follows that M0, u |= □P (a). Since M0, u ̸|= P (a),
it follows that M0, u ̸|= □P (a) → P (a) and so M0, u ̸|= 3∀ref . On the other hand, since R is serial,
M0, u |= 3⩽n+1⊤. Hence, F0 ̸|= An.

It remains to prove that F0 ⊩ QK4Altn. We use Proposition 8 to prove that F0 ⊩ QK4Alt1 and
hence F0 ⊩ QK4Altn, for every n ⩾ 1. It should be clear that F0 = (W,R) |= K4Alt1. Let n ⩾ 1 and
d, e ∈ Dn. Then, dRne iff ∀j ej = b; hence, every d ∈ Dn has exactly one Rn-successor, b, and so Rn
is transitive and 1-alternative (in fact, functional). Thus, Fn |= K4Alt1, for every n < ω. Hence, by
Proposition 8, F0 ⊩ QK4Alt1 and so F0 ⊩ QK4Altn, for every n ⩾ 1.

The proof for QS4Altn is analogous. Instead of the formula An, we use 32∀x (32P (x) → P (x)),
and instead of the Kripke bundle F0, we use the Kripke bundle F1 defined as follows: W = {u},
R = {(u, u)}, Du = {a, b}, ρ = {(a, a), (a, b), (b, b)}, and F1 = (W,R,D, ρ).

References

[1] Dov Gabbay, Valentin Shehtman, and Dmitrij Skvortsov. Quantification in Nonclassical Logic, Volume 1, volume 153

of Studies in Logic and the Foundations of Mathematics. Elsevier, 2009.
[2] Valentin Shehtman. On Kripke completeness of modal predicate logics around quantified K5. Annals of Pure and

Applied Logic, 174(2):103202, 2023.

[3] Valentin Shehtman and Dmitry Shkatov. Some prospects for semiproducts and products of modal logics. In N. Olivetti
and R. Verbrugge, editors, Short Papers Advances in Modal Logic AiML 2020, pages 107–111. University of Helsinki,

2020.



USING THE TEMPORAL MONODIC CLIQUE-GUARDED NEGATION

FRAGMENT TO SPECIFY SWARM PROPERTIES

SEN ZHENG, MICHAEL FISHER, AND CLARE DIXON

Abstract. Both the guarded negation and the clique-guarded negation fragments of first-order logic
were shown to be robustly decidable. However, unlike the guarded and the packed fragments, we

are not aware of their combination with first-order temporal logics, either considering theoretical
properties or their practical application in specifying real-world problems. In this paper, we formally

define the monodic clique-guarded negation fragment and explore using this fragment to specify the

properties of robot swarms.

1. Introduction

Though First-Order Temporal Logic (FOTL) is very expressive and useful in Computer Science, it
is generally highly undecidable and not even recursively enumerable. The seminal work of [6] attempts
to identify decidable fragments of FOTL. The idea is to first identify a decidable fragment in the non-
temporal part of FOTL, and then extend the fragment with temporal monodicity, i.e. each formula in
the fragment that is under a temporal operator contains no more than one free variable.

One of the promising decidable fragments in FOTL is the monodic guarded fragment (MGF) [6], since
the guarded fragment [1, 3] is a natural generalisation of modal logics and therefore the fragment inherits
desirable computational properties, for example, robust decidability [9], from modal logics. The packed
fragment [7], the guarded negation and the clique-guarded negation fragments [2] are decidable fragments
that generalise the guarded fragment and inherit its positive properties. However, though the monodic
packed fragment (MPF) is shown to be decidable [5], yet decidability of the monodic guarded negation
fragment (MGNF) and the monodic clique-guarded negation fragment (MCGNF) is unknown. Fig. 2
depicts the relationship among these monodic fragments. Due to the decidability result of MGF and
MPF, we conjecture that MCGNF is likely to be decidable. As MCGNF subsumes all the aforementioned
monodic fragments, this short paper will focus on MCGNF.

We will particularly be concerned with robot swarms. A robot swarm is a collection of (often simple)
robots designed to work together to carry out tasks. Such swarms rely on the simplicity of the individual
robots, the fault tolerance inherent in having a large population of often identical robots and the self-
organised behaviour of the swarm as a whole. An overview of swarm robotics algorithms can be found
in [8]. With such multiple-entity systems, verification that desired properties do hold is challenging as
the state space becomes large once the number of entities grows. Also with approaches such as model
checking or propositional temporal logic, we usually have to fix the number of entities we consider. First-
order temporal logic, using a suitable decidable fragment, avoids this need by allowing quantification
over the robots. Verification of protocols for multiple entities using monodic first-order temporal logic
is described for example in [4]. This short paper explores how MCGNF can specify the properties of
swarms.

2. Temporal monodic clique-guarded negation fragment

We now formally define MCGNF. Formulas in MCGNF are interpreted in the standard first-order
temporal structure, where a strict linear order represents the flow of time.
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Figure 2. The relationship of the monodic guarded fragments and FOTL
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Definition 1. The temporal monodic clique-guarded negation fragment (MCGNF) is a fragment of
temporal first-order logic without (non-constant) function symbols but with equality, inductively defined
as follows:

(1) ⊤ and ⊥ belong to MCGNF.
(2) If A is an atom, then A belongs to MCGNF.
(3) If A and B are atoms, A ∨B and A ∧B belong to MCGNF.
(4) If F is a non-temporal formula in MCGNF, then ∃xF belongs to MCGNF.
(5) Let F be a formula in MCGNF and G(x, y) a conjunction of atoms. Then, ∃xG(x, y) ∧ ¬F

belongs to MCGNF if
(a) all free variables of F are in y,
(b) each variable in x occurs in at most one atom of G(x, y) if x exist,
(c) each pair of distinct variables in y co-occurs in at least one atom of G(x, y).

(6) If F belongs to MCGNF and F contains at most one free variable, then ⃝F , 2F and 3F belong
to MCGNF.

We will focus on closed formulas in MCGNF, and we use notation a, b and c to denote constants.

3. Specifying robot swarm properties

We use MCGNF to specify three swarm properties. The first two relate to the “coherence” property,
namely robots maintaining a connected group, described for example in [10]. The third example relates
to the shape of the robot swarm and is inspired by robots having to form particular shapes such as lines
or squares (see for example [8]) where a line of robots might be needed to enter a pipe for inspection
or to form a communication network while a square might be needed for object transportation.

Specifying a clique of robots. MCGNF can describe robots that form a clique. For example, a clique
of four distinctive robots can be specified using the monodic clique-guarded negation formula

∃x1...4(R(x1, x2) ∧R(x1, x3) ∧R(x1, x4) ∧R(x2, x3) ∧R(x2, x4) ∧R(x3, x4)∧
x1 ̸≈ x2 ∧ x1 ̸≈ x3 ∧ x1 ̸≈ x4 ∧ x2 ̸≈ x3 ∧ x2 ̸≈ x4 ∧ x3 ̸≈ x4).

Specifying a robot leaving a robot clique. The following formula in MCGNF describes that a
robot a leaves an a-containing three-node clique in the next temporal step:

∃x1...2(adjacent(x1, x2) ∧ adjacent(x2, a) ∧ adjacent(x1, a)) →
⃝∃y1...2(adjacent(y1, y2) ∧ ¬adjacent(y1, a) ∧ ¬adjacent(y2, a)).

MCGNF can also describe that in the next step, a robot in a clique connects to only one robot in that
clique. This is specified as follows:

∃x1...3(connect(x1, x2) ∧ connect(x1, x3) ∧ connect(x1, a) ∧ connect(x2, x3)
∧ connect(x2, a) ∧ connect(x3, a)) → ⃝∃y1...3(connect(y1, y2) ∧ connect(y1, y3)
∧ connect(y2, y3) ∧ connect(a, y2) ∧ ¬connect(a, y1) ∧ ¬connect(a, y3)).

Fig. 3 depicts the processes relating to the above monodic clique-guarded negation formula.

Specifying shapes of robots. A line of three robots can be specified using the following monodic
clique-guarded formula:

adjacent(a, b) ∧ adjacent(b, c) ∧ ¬∃x(adjacent(x, b) ∧ x ̸≈ a ∧ x ̸≈ c)∧
¬∃x(adjacent(x, a) ∧ x ̸≈ b) ∧ ¬∃x(adjacent(x, c) ∧ x ̸≈ b).
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Figure 3. A robot leaves a clique and connects to only one node in the clique
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Figure 4. Line-shaped (left) and quadrilateral-shaped (right) swarms

Following a similar construction, we can use the monodic clique-guarded formula

adjacent(a, b) ∧ adjacent(b, c) ∧ adjacent(c, d) ∧ adjacent(d, a)∧
¬∃x(adjacent(x, a) ∧ x ̸≈ b ∧ x ̸≈ d) ∧ ¬∃x(adjacent(x, b) ∧ x ̸≈ a ∧ x ̸≈ c)∧
¬∃x(adjacent(x, c) ∧ x ̸≈ b ∧ x ̸≈ d) ∧ ¬∃x(adjacent(x, d) ∧ x ̸≈ a ∧ x ̸≈ c)

to describe four robots forming a quadrilateral. Fig. 4, from left to right, depicts robots forming a line
and a quadrilateral, respectively.

4. Conclusion

We have applied MCGNF to formalised three use-cases of swarm robots. It gives us confidence that
MCGNF can be useful in specifying more complex properties that previously cannot be specified solely
using propositional temporal logic or MPF. One of our future challenges is to handle negated formulas
in MCGNF, since the free variables of these formulas need to occur in an atom or a clique of atoms,
which is sometimes not guaranteed when specifying swarm properties.

Work supported by the UKRI Verifiability Node (EP/V026801) and by the Royal Academy of Engi-
neering under its Chair in Emerging Technologies scheme.
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