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Abstract. We report on research in progress, supervised by Joel
David Hamkins and Benedikt Löwe. Hamkins and Löwe deter-
mined the (propositional) modal logic of forcing to be S4.2; we
aim to determine the predicate modal logic of forcing.

Forcing is a fundamental technique in set theory that was introduced
in 1963 by Paul Cohen and was first used to prove the independence
of the Continuum Hypothesis in [1]. It is a method for constructing
new models of set theory by extending an already known model, the
ground model, in a carefully chosen way as to allow for a considerable
amount of control over the structure and truths of the extension model.
The technique has revolutionized the field of set theory, leading to far-
reaching applications and an abundance of new models of ZFC.
This relation between a ground model and its forcing extensions has

led to the notion of the set-theoretic multiverse, a rich and complex
hierarchy of set-theoretic universes. Its structure has been studied by
means of a forcing interpretation of the modalities □ and ♢. For a
model M of set theory we interpret M |= □φ as “in every forcing
extension φ holds” and M |= ♢φ as “in some forcing extension φ
holds”. Further, we say that ψ(p0, ..., pn) is a ZFC-provable propo-
sitional modal principle of forcing if it is a propositional modal sen-
tence such that ψ(φ0, ..., φn) is provable for all set-theoretic sentences
φ0, ..., φn. The forcing interpretation of □ and ♢ was first introduced
by Hamkins in [11], where the relative consistency of ZFC together with
the maximality principle ♢□p→ □p was shown. Subsequently, in [12],
a new area of research, the modal logic of forcing, was introduced by
Hamkins and Löwe, and the propositional modal principles of forcing
that are provable from ZFC were determined to precisely match the
modal logic S4.2. This was followed by several works by various au-
thors which further established the modal account on forcing, among
them [11, 18, 16, 8, 9, 19, 21, 7, 6, 13, 10, 14, 23, 20]. The techniques de-
veloped for the study of modal logics of multiverses have been fruitfully
used in other structural areas of mathematics, cf., e.g., [2, 15, 22, 3].

In the presentation, I shall report on an ongoing project to extend
the results by Hamkins & Löwe to determine the predicate modal logic
of forcing. More specifically, let L♢ be the first-order modal language
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containing symbols for infinitely many predicates Pi of each arity and
infinitely many variables x, y, z, ..., and let formulas of L♢ be closed
under Boolean connectives, modal operators and quantifiers. Where
L∈ is the language of set theory, we can now define what it means to
be a forcing translation.

Definition. A forcing translation is a function σ, mapping formulas
ψ of L♢ to formulas ψσ of L∈, defined recursively as follows, where
the φi are L∈ formulas with as many free variables as the arity of the
respective predicates Pi.

Pi(x̄)
σ ≡ φi(x̄)

(ψ0(x̄) ∧ ψ1(ȳ))
σ ≡ ψ0(x̄)

σ ∧ ψ1(ȳ)
σ

(¬ψ(x̄))σ ≡ ¬ψ(x̄)σ

(∀xψ(x, ȳ))σ ≡ ∀x ψ(x, ȳ)σ

(□ψ(x̄))σ ≡ in every forcing extension ψ(x̄)σ

In other words, σ is a forcing translation if it maps ψ to a substitution
instance of ψ where predicates Pi are replaced by formulas φi having
the same number of arguments such that each instance of φi takes the
free variables that Pi would have taken in the same instance in the
original formula.

Definition. A predicate modal assertion ψ is a ZFC-provable principle
of forcing if for all forcing translations σ, ZFC ⊢ ψσ.

The goal of our project is to determine the ZFC-provable predicate
principles of forcing. An example of such a principle is the converse
Barcan formula

□∀xP (x) → ∀x□P (x),
which is always valid in a Kripke model with inflationary domains.
Indeed, if ∀xφ(x) is true in every forcing extension, then in particular,
φ(x) will be true in every forcing extension for every set x in the ground
model, precisely because x continues to exist in the extension. In fact,
this formula is even provable from the axioms and rules of first-order
logic together with those of the smallest normal modal logic K (hence
is included in QS4.2 below).

It turns out that the answer to our main question might differ con-
siderably depending on whether or not our language contains equality:
we conjecture the answer to be different for the cases without and with
equality.

Definition. We let QS4.2 be the smallest set of formulas containing

(1) axioms of first-order logic without equality and
(2) ψ(χ0, ..., χn−1) whenever ψ(p0, ..., pn−1) is a formula of proposi-

tional S4.2, where the χi are formulas of L♢ without equality,
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and closed under the rules Modus Ponens, Necessitation, Universal
Instantiation and Universal Generalisation. Further, we let QS4.2= be
defined as above but include equality in both points (1) and (2).

Conjecture 1. The ZFC-provable principles of forcing without equality
are exactly those sentences in QS4.2.

Conjecture 2. The ZFC-provable principles of forcing with equality
are exactly those sentences in the smallest set of formulas containing

(1) the formulas in QS4.2=,
(2) Necessary Identity (NI)

∀x∀y(x = y ⇐⇒ □x = y),

(3) Necessary Non-identity (NNI)

∀x∀y(x ̸= y ⇐⇒ □x ̸= y),

(4) and Infinite Domains (InfD), which is the set of sentences

{∃x0...∃xn
∧
i ̸=j

xi ̸= xj | n ∈ ω},

and is closed under the rules Modus Ponens, Necessitation, Universal
Instantiation and Universal Generalisation.

The approach we aim to follow in proving these conjectures is based
on the method developed in [12] and further specified in [14]. As in the
propositional case, the lower bounds (i.e., showing that every formula
conjectured to be a provable principle is a provable principle) are easy
to verify and we can readily do so. The upper bounds (i.e., showing
that no other formulas are provable principles) are considerably harder.
In the propositional case, this is done by so-called control statements
that we can determine for modal logics that are characterised by a class
of finite frames (cf. [14, § 4]). Unfortunately, neither of the conjectured
predicate modal logics have the finite frame property, so we must adjust
this idea.

In the talk, I shall give some details of the techniques that we plan to
employ to solve this technical problem and approach the proof of the
two conjectures. This talk reports on work supervised by Joel David
Hamkins and Benedikt Löwe.
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