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Basic setting from the logical point of view

• We are thinking of propositional logics specified using
Gentzen-style deductive systems whose primary entities are
sequents of the form

Γ ⊢ ∆,

where Γ and ∆ are structure composed of formulas using a
binary non-associative and not necessarily commutative operator,
usually denoted by comma (we also need parentheses for the
grouping of formulas).

• We naturally want

Γ ⊢ Γ and Γ ⊢ ∆ & ∆ ⊢ Θ ⇒ Γ ⊢ Θ,

i.e., we want ⊢ to be reflexive and transitive (we are not
necessarily committed to other properties of ⊢ such as
monotonicity and compactness).
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Basic setting from the logical point of view

• We have binary connectives that internalize in the language
structural properties of our sequents:

• connective ◦ (‘fusion’) represents the comma: if γ1 and γ2
correspond, respectively, to Γ1 and Γ2, then [γ1 ◦ γ2] ⊢ ∆
corresponds to [Γ1,Γ2] ⊢ ∆;

• two connectives \ and / internalizing statements about deduction
(they differ in whether a designated premise comes from the left
or from the right):

γ1 ◦ γ2 ⊢ δ ⇐⇒ γ2 ⊢ γ1\δ;
γ1 ◦ γ2 ⊢ δ ⇐⇒ γ1 ⊢ δ/γ2.

• We might want to have other connectives, say ∧ and ∨.
• The basic logic we get is Non-associative Lambek Calculus.

• If we add ∧ and ∨ with their usual Gentzen-style rules, we get
Full Non-associative Lambek Calculus.

• If, additionally, ∧ and ∨ distribute over each other, we get Full
Distributive Non-associative Lambek Calculus.
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Residuated ordered groupoids (rogs)

Fix a signature σ containing a binary relation symbol ⩽ and binary
operational symbols ◦, \, and /.

Definition

A residuated ordered groupoid (for short, rog) is a σ-structure
A = ⟨A, ◦, \, /,⩽⟩, where ⟨A,⩽⟩ is a poset and ◦, \ and / are binary
operations on A such that, for all a, b, c ∈ A,

a ◦ b ⩽ c ⇐⇒ b ⩽ a\c ⇐⇒ a ⩽ c/b. (1)

The class of all rogs is denoted by ROG.

Dmitry Shkatov Complexity of theories of residuated structures



Basic setting rogs brdgs References

Theories of rogs

The atomic theory of ROG is the set of the atomic formulas (i.e.,
expressions of the form s ⩽ t) valid in ROG. This theory is in P
(E. Aarts and K. Trautwein [1]).

The Horn theory of ROG is the set of formulas of the form
α1∧̇ . . . ∧̇αn ⇒ α, where α1, . . . , αn and α are all atomic, valid in
ROG. This theory is in P (W. Buszkowski [2]).

The universal theory of ROG is the set of formulas
∀x1 . . . ∀xnφ(x1, . . . , xn), where φ is a Boolean combination of atomic
formulas, valid in ROG. This theory is coNP-complete (this talk &
JoLLI paper).
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Partial structures

Definition

A partial σ-structure is a tuple B = ⟨B, ◦B, \B, /B,⩽B⟩, where
B ̸= ∅, ⩽B⊆ B ×B, and ◦B, \B, and /B are partial binary
operations on B (i.e., partial functions B ×B 7→ B).

The domains of ◦B, \B and /B are denoted by, respectively, dom ◦B,
dom \B, and dom /B.
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Partial rogs

Definition

A partial rog is a partial σ-structure B = ⟨B, ◦B, \B, /B,⩽B⟩ that is
a partial substructure of a rog, i.e., such that there exists a rog
A = ⟨A, ◦A, \A, /A,⩽A⟩ with B ⊆ A, ⩽B= ⩽A↾B and a ⋆B b = a ⋆A b
for every ⋆ ∈ {◦, \, /} and every ⟨a, b⟩ ∈ dom ⋆B.

Caution: if B is a partial rog that is a partial substructure of a rog
A, then ⋆B (⋆ ∈ {◦, \, /}) is not necessarily a restriction of ⋆A to B.
It is possible that a, b ∈ B and a ⋆A b ∈ B, but ⟨a, b⟩ /∈ dom ⋆B; i.e.,
we do not require that dom ⋆B = dom ⋆A ↾ B.

E.g., we might have ⟨a1, a2⟩ ∈ dom ◦B, ⟨b1, b2⟩ ∈ dom \B, and
a2 ◦A b1 = a1 ◦A a2(= a1 ◦B a2), but ⟨a2, b1⟩ /∈ dom ◦B.

Dmitry Shkatov Complexity of theories of residuated structures



Basic setting rogs brdgs References

Embedding a partial structure into a structure

Definition

Let B = ⟨B, ◦B, \B, /B,⩽B⟩ be a partial σ-structure and
A = ⟨A, ◦A, \A, /A,⩽A⟩ a σ-structure. An embedding of B into A
is a map α : B → A such that

• a ⩽B b ⇐⇒ α(a) ⩽A α(b), for every a, b ∈ B;

• α(a ⋆B b) = α(a) ⋆A α(b), for every ⋆ ∈ {◦, \, /} and every
⟨a, b⟩ ∈ dom ⋆B.

Fact

If a partial σ-structure B is embeddable into a rog A, then B is
isomorphic to a partial substructure of A; hence, B is a partial rog.
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Characterization of partial rogs

Theorem

A partial σ-structure B = ⟨B, ◦B, \B, /B,⩽B⟩ is a partial rog iff the
following conditions are satisfied:

(i) ⟨B,⩽B⟩ is a poset;

(ii) ∀⟨a, b⟩, ⟨c, d⟩ ∈ dom ◦B [a ⩽B c & b ⩽B d =⇒ a ◦B b ⩽B c ◦B d];

(iii) ∀⟨a, b⟩ ∈ dom ◦B ∀⟨c, d⟩ ∈ dom \B

[a ⩽B c & b ⩽B c\Bd ⇒ a ◦B b ⩽B d];

(iv) ∀⟨a, b⟩ ∈ dom ◦B ∀⟨c, d⟩ ∈ dom /B

[a ⩽B c/Bd & b ⩽B d ⇒ a ◦B b ⩽B c];

(v) ∀⟨a, b⟩ ∈ dom \B ∀⟨c, d⟩ ∈ dom ◦B

[a ⩽B c & c ◦B d ⩽B b ⇒ d ⩽B a\Bb];

(vi) ∀⟨a, b⟩ ∈ dom /B ∀⟨c, d⟩ ∈ dom ◦B

[b ⩽B d & c ◦B d ⩽B a ⇒ c ⩽B a/Bb];
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Characterization of partial rogs (contnd)

Theorem

A partial σ-structure B = ⟨B, ◦B, \B, /B,⩽B⟩ is a partial rog iff
⟨B,⩽B⟩ is a poset and the following conditions are satisfied:

· · ·

(vii) ∀⟨a, b⟩, ⟨c, d⟩ ∈ dom \B [a ⩽B c & d ⩽B b ⇒ c\Bd ⩽B a\Bb];
(viii) ∀⟨a, b⟩ ∈ dom \B ∀⟨c, d⟩ ∈ dom /B

[a ⩽B c/Bd & c ⩽B b ⇒ d ⩽B a\Bb];
(ix) ∀⟨a, b⟩ ∈ dom /B ∀⟨c, d⟩ ∈ dom \B

[d ⩽B a & b ⩽B c\Bd ⇒ c ⩽B a/Bb];

(x) ∀⟨a, b⟩, ⟨c, d⟩ ∈ dom /B [c ⩽B a & b ⩽B d ⇒ c/Bd ⩽B a/Bb].

(⇒) The analogues of properties (i) through (x) hold in every rog.

(⇐) We construct a relational frame F from B and then a rog AF out
of F, and embed B into AF.
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Relational frames

Relational frames are widely used in the study of non-classical logics,
due to the success of the Kripke frame semantics for modal and
superintuitionistic logics. The relational frame theory for rogs and
related structures is due to Dunn [3].

Definition

A frame is a relational structure F = ⟨P,⩽, R⟩, where ⟨P,⩽⟩ is a
poset and R is a ternary relation on P that is monotone in the last
coordinate and antitone in the first two coordinates: for every
f, f ′, g, g′, h, h′ ∈ P ,

R(f, g, h) & f ′ ⩽ f & g′ ⩽ g & h ⩽ h′ =⇒ R(f ′, g′, h′). (2)
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From frames to algebras

Let F = ⟨P,⩽, R⟩ be a frame and U(P ) be the set of upsets of F (i.e.
if X ∈ U(P ), f ∈ X and f ⩽ g, then g ∈ X).
Define, for all X,Y ∈ U(P ),

X ◦ Y := {h ∈ P | ∃f, g ∈ P [f ∈ X & g ∈ Y & R(f, g, h)]}; (3)

X\Y := {g ∈ P | ∀f, h ∈ P [f ∈ X & R(f, g, h) ⇒ h ∈ Y ]}; (4)

Y/X := {f ∈ P | ∀g, h ∈ P [g ∈ X & R(f, g, h) ⇒ h ∈ Y ]}. (5)

Since F satisfies (2), so defined ◦, \ and / are operations on U(P ).
The definitions (3)–(5) ensure that (1) is satisfied with respect to ⊆
on U(P ). Hence, AF = ⟨U(P ), ◦, \, /,⊆⟩ is a rog.
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From algebras to frames

Let A = ⟨A, ◦, \, /,⩽⟩ be a rog. Define a ternary relation R on U(A)
by

R(f, g, h) ⇐⇒ ∀a, b ∈ A [a ∈ f & b ∈ g =⇒ a ◦ b ∈ h]. (6)

Then R and ⊆ satisfy condition (2), hence FA = ⟨U(A),⊆, R⟩ is a
frame.

Fact

Let A = ⟨A, ◦, \, /,⩽⟩ be a rog. The map µ : A → U(U(A)) defined by
µ(a) = {f ∈ U(A) | a ∈ f} is an embedding of A into AFA

.
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Proof idea for part (⇐) of the Theorem

Suppose B = ⟨B, ◦B, \B, /B,⩽B⟩ is a partial σ-structure satisfying (i)
through (x). We obtain a rog into which B is embeddable. Define a
ternary relation RB on U(B) by:

RB(f, g, h) ⇐⇒ ∀⟨a, b⟩ ∈ dom ◦B [a ∈ f & b ∈ g =⇒ a ◦B b ∈ h]

& (∀⟨a, b⟩ ∈ dom \B [a ∈ f & a\Bb ∈ g =⇒ b ∈ h]

& ∀⟨a, b⟩ ∈ dom /B [a/Bb ∈ f & b ∈ g =⇒ a ∈ h].

Then F = ⟨U(B),⊆, RB⟩ is a frame.
Let AF = ⟨U(U(B)), ◦, \, /,⊆⟩ be the rog associated with F and let
µ : B → U(U(B)) be the map defined by µ(a) = {f ∈ U(B) | a ∈ f}.
Then µ is an embedding of B into AF.
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Evaluation of formulas in rogs

Universal σ-sentences are formulas of the form ∀x1 . . . ∀xnφ, where φ
is a quantifier-free (first-order) σ-formula, i.e., a formula defined by
the BNF expression

φ := t ⩽ t | ¬̇φ | (φ ∧̇φ) | (φ ∨̇φ),

with t ranging over σ-terms, and containing no variables other than
x1, . . . , xn.

Formulas are evaluated as in standard model theory. The universal
theory of ROG is the set of all universal σ-sentences valid on ROG.

By the semantics of quantifiers, a universal sentence ∀x1 . . . ∀xn φ is
valid on ROG iff ¬̇φ is not satisfiable in ROG. Thus, satisfiability of
quantifier-free σ-formulas in ROG and membership in the universal
theory of ROG are complementary computational problems.
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Evaluation of quantifier-free formulas in partial rogs

We shall also need the notion of satisfaction of a quantifier-free
σ-formula in a partial rog under a partial assignment (partial function
from variables into the universe of a partial rog). Let B be a partial
rog and v a partial assignment in B.

Define the relation B ↓ v(t) (“the value of t in B is defined under v”):

B ↓ v(xi) ⇐⇒ xi ∈ dom v;

B ↓ v(t1 ⋆ t2) ⇐⇒ B ↓ v(t1), B ↓ v(t2) and ⟨v(t1), v(t2)⟩ ∈ dom ⋆B,

where ⋆ ∈ {◦, \, /}.

Intuitively, B |=v φ and B ̸|=v φ mean that the relation B ↓ v(t) holds
for enough terms of φ for the value of φ in B under v to come out as,
respectively, true and false.
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Evaluation of quantifier-free formulas in partial rogs

Formally, we define the relations B |=v φ (“φ is satisfied in B
under v”), B ̸|=v φ (“φ is not satisfied in B under v”) and B p≈v

φ
(“the value of φ in B under v is undefined”):

B |=v t1 ⩽ t2 ⇐⇒ B ↓ v(t1), B ↓ v(t2) and v(t1) ⩽B v(t2);

B ̸|=v t1 ⩽ t2 ⇐⇒ B ↓ v(t1), B ↓ v(t2) and v(t1) ̸⩽B v(t2);

B p≈v
t1 ⩽ t2 otherwise;

B |=v ¬̇φ ⇐⇒ B ̸|=v φ;

B ̸|=v ¬̇φ ⇐⇒ B |=v φ;

B p≈v ¬̇φ otherwise;

B |=v φ1 ∧̇φ2 ⇐⇒ B |=v φ1 and B |=v φ2;

B ̸|=v φ1 ∧̇φ2 ⇐⇒ B ̸|=v φ1 or B ̸|=v φ2;

B p≈v
φ1 ∧̇φ2 otherwise;

B |=v φ1 ∨̇φ2 ⇐⇒ B |=v φ1 or B |=v φ2;

B ̸|=v φ1 ∨̇φ2 ⇐⇒ B ̸|=v φ1 and B ̸|=v φ2;

B p≈v
φ1 ∨̇φ2 otherwise.
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Evaluation of quantifier-free formulas in partial rogs

A quantifier-free σ-formula φ is satisfiable in a partial rog B if there
exists a partial assignment v on B such that B |=v φ.
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Measures of complexity of formulas

The standard measure of complexity of a formula φ is its length len φ
(the number of occurrences of symbols in φ).

For us, it’s more convenient to work with the following measure:

size φ = # of variables + # of occurrences of operation symbols in φ.

Surely, size φ ⩽ len φ, so we are fine.
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Main theorem for rogs

Lemma

A quantifier-free σ-formula φ is satisfiable in ROG iff it is satisfiable
in a partial rog whose cardinality does not exceed size φ.

Proof.

(‘only if’) Let A |=v φ, for a rog A. Put B = {v(t) | t ∈ terms φ}. Then
|B| ⩽ size φ. For all a1, a2 ∈ B and ⋆ ∈ {◦, \, /}, let ⟨a1, a2⟩ ∈ dom(⋆B) if
there exists t1 ⋆ t2 ∈ terms φ with a1 = v(t1) and a2 = v(t2). Then, for
every ⋆ ∈ {◦, \, /} and ⟨a1, a2⟩ ∈ dom(⋆B), set a1 ⋆

B a2 := a1 ⋆
A a2. Set

⩽B= ⩽A↾B . Then B := ⟨B, ◦B, \B, /B,⩽B⟩ is a partial rog. Let
v̄ := v ↾var φ. Then B |=v̄ φ. Thus, φ is satisfiable in a partial rog of the
required cardinality.

(‘if’) Let B |=v̄ φ, for a partial rog B and a partial assignment v̄. Let B be
a partial substructure of a rog A. Let v be a assignment on B extending v̄.
Then, B |=v φ. Since B is a partial substructure of A, it follows that
A |=v φ.
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Main theorem for rogs

Theorem

Satisfiability of quantifier-free σ-formulas in ROG is in NP. Hence,
the universal theory of ROG is in coNP.

Proof.

Let φ be a quantifier-free σ-formula. By Lemma, it is enough to check if it
is satisfiable in a partial rog of cardinality ⩽ size φ. We use a
nondeterministic algorithm: Guess a partial σ-structure
B = ⟨B, ◦B, \B, /B,⩽B⟩ with |B| ⩽ size φ and a partial assignment v̄ on B.
Check whether B is a partial rog and whether B |=v̄ φ. If both checks
succeed, return “yes”; otherwise, return “no.”

In view of Theorem, to check if B is a partial rog, it is enough to check
properties (i) through (x), which can be done in time polynomial in
|B| ⩽ size φ. Checking whether B |=v̄ φ can also be done in time
polynomial in size φ.
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Main theorem for rogs

We say that a k-ary predicate P on a structure with domain A is
non-trivial if P ̸= ∅ and P ̸= Ak; we say that a structure is
non-trivial if it has a non-trivial predicate definable in its signature.

Proposition

Let K be a class of structures containing a non-trivial structure.
Then, satisfiability of quantifier-free first-order formulas in K is
NP-hard and, hence, the universal theory of K is coNP-hard.

Proof.

Reduction from SAT. Use non-triviality to simulate Boolean variables.

Theorem

Satisfiability of quantifier-free σ-formulas in ROG is NP-complete.
Hence, the universal theory of ROG is coNP-complete.
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Unital and integral rogs

Let σ1 be an expansion of signature σ with a constant 1.

Definition

A unital rog (for short, urog) is a σ1-structure A = ⟨A, ◦, \, /,1,⩽⟩,
where ⟨A, ◦, \, /,⩽⟩ is a rog and 1 ∈ A such that a ◦ 1 = a = 1 ◦ a, for
every a ∈ A.

Definition

An integral rog (for short, irog) is a urog where a ⩽ 1, for every
a ∈ A.

Using techniques similar to those used for rogs, we obtain the
following:

Theorem

Satisfiability of quantifier-free σ1-formulas both in urogs and irogs is
NP-complete. Hence, the universal theories of urogs and irogs are both
coNP-complete.
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Residuated algebras

Definition

Let k ⩾ 1. A residuated k-algebra is a structure
A = ⟨A, t, r1, . . . , rk,⩽⟩, where ⟨A,⩽⟩ is a poset and A satisfies the
k-ary residuation property: for every a1, . . . , ak, c ∈ A and every
j ∈ {1, . . . , k},

t(a1, . . . , ak) ⩽ c ⇐⇒ aj ⩽ rj(a1, . . . , aj−1, c, aj+1, . . . , ak). (7)

Definition

A residuated algebra is a structure A = ⟨A, ρ,⩽⟩, where ⟨A,⩽⟩ is a
poset and ρ is a family of k-tuples ⟨t, r1, . . . , rk⟩, with k ⩾ 1, such
that each structure A = ⟨A, t, r1, . . . , rk,⩽⟩ is a residuated k-algebra.

Theorem

Let C be a class of residuated algebras. Satisfiability of quantifier-free
formulas in C is NP-complete. Hence, the universal theory of C is
coNP-complete.
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Residuated distributive lattice-oriented groupoids
(brdgs)

A residuated distributive lattice-oriented groupoid is a rog where the
partial order is a distributive lattice. We shall assume, for
convenience, that the lattice is bounded.

Fix a signature σbrdg containing a binary relation symbol ⩽, binary
operational symbols ∧, ∨, ◦, \, /, and constants 0 and 1.

Definition

A bounded residuated distributive lattice-oriented groupoid
(for short, brdg) is a σbrdg -structure A = ⟨A,∧,∨, ◦, \, /,⩽, 0, 1⟩,
where ⟨A,∧,∨, 0, 1⟩ is a bounded distributive lattice, ⩽ is the partial
order associated with the lattice, and ◦, \ and / are binary operations
on A such that, for all a, b, c ∈ A, the residuation condition (1) is
satisfied.

The class of all brdgs is denoted by BRDG.

Inequality is defined in the usual way: a ⩽ b := a ∧ b = a.
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Theories of brdgs

The equational theory of BRDG is the set of equations valid in
BRDG. (Conjecture: this theory is coNP-complete).

The quasi-equational theory of BROG is the set of quasi-equations
valid in BRDG. This theory is EXPTIME-complete (this talk &
Algebra Universalis paper).

The universal theory of BRDG is the set of formulas
∀x1 . . . ∀xnφ(x1, . . . , xn), where φ is a Boolean combination of atomic
formulas, valid in BRDG. This theory is EXPTIME-complete (this
talk & Algebra Universalis paper).
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Relational frames

Definition (Recall)

A frame is a relational structure F = ⟨P,⩽, R⟩, where ⟨P,⩽⟩ is a
poset and R is a ternary relation on P that is monotone in the last
coordinate and antitone in the first two coordinates: for every
f, f ′, g, g′, h, h′ ∈ P ,

R(f, g, h) & f ′ ⩽ f & g′ ⩽ g & h ⩽ h′ =⇒ R(f ′, g′, h′).
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From frames to algebras and back

Let F = ⟨P,⩽, R⟩ be a frame and U(P ) be the set of upsets of F.
Define operations on U(P ) as before, i.e., by (3)–(5). Then,
AF = ⟨U(P ),∩,∪, ◦, \, /,⊆,∅, P ⟩ is a brdg.

Let A = ⟨A,∧,∨, ◦, \, /,⩽, 0, 1⟩ be a brdg and let P (A) be the set of
prime filters of A. Define a ternary relation R on by (2):

R(f, g, h) ⇐⇒ ∀a, b ∈ A [a ∈ f & b ∈ g =⇒ a ◦ b ∈ h].

Then R and ⊆ satisfy condition (2), hence FA = ⟨P (A),⊆, R⟩ is a
frame.

Fact

Let A = ⟨A,∧,∨, ◦, \, /,⩽, 0, 1⟩ be a brdg. The map µ : A → U(P )
defined by µ(a) = {f ∈ P | a ∈ f} is an embedding of A into AFA

.
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Partial σbrdg-structures and partial rdgs

Definition

A partial σbrdg-structure is a tuple
B = ⟨B,∧B,∨B, ◦B, \B, /B,⩽B, 0B, 1B⟩, where B ̸= ∅, ⩽B⊆ B ×B,
0B, 1B ∈ B, and ∧B, ∨B, ◦B, \B, and /B are partial binary
operations on B (i.e., partial functions B ×B 7→ B).

Definition

A partial brdg is a partial σbrdg -structure
B = ⟨B,∧B,∨B, ◦B, \B, /B,⩽B⟩ that is a partial substructure of a
brdg, i.e., such that there exists a brdg
A = ⟨A,∧A,∨A, ◦A, \A, /A,⩽A⟩ with B ⊆ A, ⩽B= ⩽A↾B , 0B = 0A,
1B = 1A, and a ⋆B b = a ⋆A b, for every ⋆ ∈ {∧,∨, ◦, \, /} and every
⟨a, b⟩ ∈ dom ⋆B.

Dmitry Shkatov Complexity of theories of residuated structures



Basic setting rogs brdgs References

Embedding a partial structure into a structure

Definition

Let B = ⟨B,∧B,∨B, ◦B, \B, /B,⩽B⟩ be a partial σbrdg -structure and
A = ⟨A,∧A,∨A, ◦A, \A, /A,⩽A⟩ a σbrdg -structure. An embedding of
B into A is a map α : B → A such that

• a ⩽B b ⇐⇒ α(a) ⩽A α(b), for every a, b ∈ B;

• α(0B) = 0A;

• α(1B) = 1A;

• α(a ⋆B b) = α(a) ⋆A α(b), for every ⋆ ∈ {∧,∨, ◦, \, /} and every
⟨a, b⟩ ∈ dom ⋆B.

Fact

If a partial σbrdg -structure B is embeddable into a brdg A, then B is
isomorphic to a partial substructure of A; hence, B is a partial brdg.
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Characterization of partial bounded lattices

Fix the signature σbℓ containing ∧, ∨, 0, and 1.

Theorem (Van Alten 2013)

A partial σbℓ-structure B = ⟨B,∧B,∨B,⩽B, 0B, 1B⟩ is a partial
bounded lattice if ⩽B is a partial order on B, with bounds 0B and 1B,
and ∧B and ∨B are compatible with ⩽B, i.e.,

• if ⟨a, b⟩ ∈ dom∧B, then a ∧B b is the glb w.r.t. ⩽B;

• if ⟨a, b⟩ ∈ dom∨B, then a ∨B b is the lub w.r.t. ⩽B.
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Characterization of partial bounded distributive lattices

Definition

Let B = ⟨B,∧B,∨B,⩽B, 0B, 1B⟩ be a partial lattice. A set f ⊆ B is a
prime filter in B if the following hold:

• 0B /∈ f and 1B ∈ f ;

• if a ∈ f and a ⩽B b, then b ∈ f ;

• if a ∈ f , b ∈ f , and ⟨a, b⟩ ∈ dom∧B, then a ∧B b ∈ f ;

• if a /∈ f , b /∈ f , and ⟨a, b⟩ ∈ dom∧B, then a ∨B b /∈ f .

Theorem (Van Alten 2013)

A partial σbℓ-structure B = ⟨B,∧B,∨B,⩽B, 0B, 1B⟩ is a partial
bounded distributive lattice if B is a partial bounded lattice and,
moreover, there exists a set F of prime filters of B such that

∀a, b ∈ B [a ̸⩽B b ⇒ ∃f ∈ F (a ∈ f & b /∈ F )]. (8)
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Characterization of partial brdgs

Theorem

A partial σbrdg -structure B = ⟨B,∧B,∨B, ◦B, \B, /B,⩽B, 0B, 1B⟩ is a
partial brdg iff its σbℓ-reduct is a partial bounded lattice and there
exists a set F of prime filters of B such that (8) holds and, moreover,

∀h ∈ F ∀⟨a, b⟩ ∈ dom ◦B [a ◦B b ∈ h ⇒ ∃f, g ∈ F (a ∈ f & b ∈ g & RB(f, g, h))];
∀g ∈ F ∀⟨a, b⟩ ∈ dom \B [a\Bb /∈ g ⇒ ∃f, h ∈ F (a ∈ f & b /∈ h & RB(f, g, h)];
∀f ∈ F ∀⟨a, b⟩ ∈ dom /B [a/Bb /∈ f ⇒ ∃g, h ∈ Fa ∈ g & b /∈ h & RB(f, g, h)],

where

RB(f, g, h) ⇋ ∀⟨a, b⟩ ∈ dom ◦B(a ∈ f & b ∈ g ⇒ a ◦B b ∈ h) &
∀⟨a, b⟩ ∈ dom \B(a ∈ f & a\Bb ∈ g ⇒ b ∈ h) &
∀⟨a, b⟩ ∈ dom /B(b/Ba ∈ f & a ∈ g ⇒ b ∈ h).
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Characterization of partial brdgs (contd)

Proof.

(‘only if’) Let B = ⟨B,∧B,∨B, ◦B, \B, /B,⩽B, 0B, 1B⟩ be a partial
substructure of a brdg A. Then, ⟨B,∧B,∨B, 0B, 1B⟩ is a partial
bounded lattice. We need to exhibit a set of filters satisfying (8). Set
F := {F ∩B | F is a prime filter of A}. It can be shown that F is the
required set of prime filters.

(‘if’) Let B = ⟨B,∧B,∨B, ◦B, \B, /B,⩽B, 0B, 1B⟩ be a partial
σbrdg -structure satisfying the requirements of the theorem. The
structure F = ⟨F,⊆, RB⟩ is a frame. Let
AF = ⟨U(F ),∩,∪, ◦, \, /,⊆,∅, F ⟩ be the brdg for F. Define the map
µ : B → U(F ) by µ(a) := {f ∈ F | a ∈ f}. It can be shown that µ is
an embedding of B into AF. Hence, B is a partial brdg.
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Upper bound for brdgs

Lemma

A quantifier-free σbrdg -formula φ is satisfiable in BRDG iff it is
satisfiable in a partial brdg whose cardinality does not exceed
size φ+ 2.

Theorem

Satisfiability of quantifier-free σbrdg -formulas in BRDG is in
EXPTIME. Hence, the universal theory of BRDG is in EXPTIME.
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Upper bound for brdgs

Proof.

Let φ be a quantifier-free σbrdg -formula. By Lemma, it is enough to check if
it is satisfiable in a partial brdg of cardinality ⩽ size φ+ 2.
We use the following deterministic algorithm to check if a partial
σbrdg -structure B is a partial brdg:

(1) Check that ⩽B is a partial order on B, that 0B and 1B are bounds,
and that ∧B and ∨B are compatible with ⩽B (polynomial);

(2) Check if there exists a set of prime filters of B with the required
properties. To that end,

• Generate all prime filters of B (exponential in |B|);
• Repeatedly eliminate filters not meeting the desired properties

(exponential in |B|);
• If the resultant set is empty, return ‘no’; otherwise, check (8).

Using the outlined algorithm, we check all the structures σbrdg -structures of
size ⩽ size φ to see if they are partial brdgs and, if so, check if φ is satisfied
there under some partial assignment.
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Lower bound for brdgs

By reduction from a set of modal formulas describing an n× n tiling
problem through the universal theory of bounded distributive lattices
with a unary operator.

Theorem

Satisfiability of quantifier-free σbrdg -formulas in BRDG is
EXPTIME-complete. Hence, the universal theory of BRDG is
EXPTIME-complete.

Since the negation of a formula obtained through the reduction is a
quasi-equation, we also obtain the following:

Theorem

The quasi-equational theory of BRDG is EXPTIME-complete.
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Schroeder-Heister P, Došen K (eds) Substructural logics, Studies in
Logic and Computation, vol 2, Clarendon Press, pp 72–108

Dmitry Shkatov Complexity of theories of residuated structures



Basic setting rogs brdgs References

References (contnd)

D. Shkatov and C. J. Van Alten.

Complexity of the universal theory of bounded residuated distributive
lattice-ordered groupoids.

Algebra Universalis, 80(3):36, 2019.

D. Shkatov and C. J. Van Alten.

Complexity of the universal theory of residuated ordered groupoids.

Journal of Logic, Language and Information, 2023.

https://doi.org/10.1007/s10849-022-09392-9.

C. J. Van Alten.

Partial algebras and complexity of satisfiability and universal theory
for distributive lattices, Boolean algebras and Heyting algebras.

Theoretical Computer Science 501:82–92.

Dmitry Shkatov Complexity of theories of residuated structures



Basic setting rogs brdgs References

Thank you!
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