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Abstract

We study two kinds of combined modal logics, semiproducts and prod-

ucts with S5, and their correlation with modal predicate logics. We

present examples of propositional modal logics for which semiproducts

or products with S5 are axiomatized in the minimal way (they are called

semiproduct- or product-matching with S5) and also present counterex-

amples for these properties. The finite model property for (semi)products,

together with (semi)product-matching, allow us to show decidability of

corresponding 1-variable modal predicate logics.

Keywords: semiproducts of modal logics, products of modal logics, predicate

modal logic.

1 Introduction

We study two kinds of combined modal logics, products and semiproducts (also

known as expanding products). Products were introduced in the 1970s to for-

malise reasoning about multiple independent modalities [1, 2]; a comprehensive

investigation of the field was undertaken in [3]; some later developments were

presented in [4].

So far the study of semiproducts has been lagging behind the study of prod-

ucts. For example, while there is a general theorem on product-matching [3,
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Theorem 5.9], an analogous theorem for semiproducts [3, Theorem 9.10] is much

weaker. In many cases, properties of semiproducts are unknown.

In this paper, we are interested in semiproducts and products with S5. Our

interest is primarily motivated by their connection with modal predicate logics,

noted by Fischer-Servi [5]. This connection is, in fact, a bimodal version of

the well-known M. Wajsberg’s interpretation of S5 as a single-variable classical

predicate logic (see, e.g., [3, Subsection 1.3]).

To study axiomatization of these semiproducts and products and the rela-

tionship of these logics with 1-variable modal predicate logics, we introduce a

classification of propositional modal logics and give examples for some categories

of the proposed classification.

In particular, we consider logics of finite depth, in the sense of [6], with the

axiom of thickness corresponding to the Horn condition

∀x, y, z, t (xRy ∧ xRz ∧ yRt → zRt).

We show that semiproducts and products of such logics with S5 are axioma-

tized in the minimal way and are decidable. Moreover, they have the product

and semiproduct finite model property. This implies decidability and the finite

model property for corresponding 1-variable predicate logics.

2 Preliminaries

2.1 Propositional modal logics

We consider N -modal propositional formulas constructed from a countable set

PL = {p1, p2, p3, . . . } of proposition letters, the constant ⊥, the connective →,

and unary modalities □1, . . . ,□N . In this paper, N ∈ {1, 2}.
We use lowercase letters p, q, r, . . . for proposition letters and uppercase let-

ters A,B,C, . . . for formulas. We use the standard abbreviations ⊤, ¬A, A∧B,

A ∨B, A ↔ B, 3iA and the iterated modalities □n
i and 3n

i . The modality of

the 1-modal language is usually denoted by □.

A k-formula is a formula containing only proposition letters from the set

{p1, p2, . . . , pk}. A 0-formula (i.e., a formula without propositional letters) is

called closed.

An N -modal propositional logic is a set of N -modal formulas containing the

Boolean tautologies and formulas of the form □i(p → q) → (□ip → □iq) and

closed under Substitution, Modus Ponens, and Necessitation. The smallest such

logic is called KN ; also, K := K1.
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If Λ is an N -modal logic and A an N -modal formula, then Λ ⊢ A means the

same as A ∈ Λ. The smallest logic including a logic Λ and a set Γ of formulas

is denoted by Λ+ Γ; we write Λ+A instead of Λ+ {A}.
The fusion Λ1 ∗Λ2 of 1-modal logics Λ1 and Λ2 is the K2+Λ1∪Λ+1

2 , where

Λ+1
2 is obtained from Λ2 by replacing every occurrence of □1 with □2.

We use standard definitions from Kripke semantics. An N -frame is a tuple

F = (W,R1, . . . , RN ) where W ̸= ∅ and R1, . . . , RN ⊆ W 2; elements of W are

called points. A Kripke model over F is a pair M = (F, θ) where θ : PL → 2W .

The truth relation between points w of a modal M and formulas is defined by

recursion; in particular,

� M,w |= pi if w ∈ θ(pi);

� M,w |= □iA1 if M,w′ |= A1 whenever wRiw
′.

A formula A is (globally) true in a model M (in symbols, M ⊨ A) if M,w ⊨

A, for every w ∈ W . A formula A is valid on a frame F (in symbols, F ⊨ A) if

M ⊨ A, for every model M over F .

If Γ is a set of formulas, V(Γ) denotes the class of frames validating Γ; if A

is a formula, we write V(A) instead of V({A}). If Λ is a logic, then V(Λ) is

said to be the class of Λ-frames.

By soundness theorem, V(Γ) = V(KN +Γ). Also, if F is an N -frame and C
a class of N -frames, then L(F ) := {A | F ⊨ A} and L(C) :=

⋂
{L(F ) | F ∈ C}

are N -modal logics. We say that the logic L(C) is determined by C.
A logic is Kripke complete if it is determined by some class of frames. A

logic has the finite model property (fmp), if it is determined by a class of finite

frames.

Lemma 2.1. Let Λ1 and Λ2 be 1-modal logics and let F = (W,R1, R2) be a

Kripke frame. Then,

F ⊨ Λ1 ∗Λ2 ⇐⇒ (W,R1) ⊨ Λ1 & (W,R2) ⊨ Λ2.

A frame (W,R1, . . . , RN ) can also be viewed as a classical first-order model

in the signature {R1, . . . , RN ,=}.

Definition 2.2. A modal logic Λ is elementary if the class V(Λ) is definable

by a classical first-order sentence. An N -modal formula A and a classical first-

order sentence Φ in the signature {R1, . . . , RN ,=} are correspondents if the

class V(A) is definable by Φ.
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Definition 2.3. A universal Horn sentence is a classical first-order sentence in

the signature {R1, . . . , RN ,=} of the form

∀x∀y ∀z̄ (Φ(x, y, z̄) → Ri(x, y)),

where Φ(x, y, z̄) is a conjunction of atomic formulas.

An N -modal formula A is Horn if it corresponds to a universal Horn sen-

tence.

Definition 2.4. A 1-modal logic Λ is Horn axiomatizable if Λ = K + Γ, for

some set Γ of formulas that are either Horn or closed.

Definition 2.5. A cone of a frame F = (W,R1, . . . , RN ) at a point w, denoted

by F↑w, is the restriction of F to the set (R1∪ . . .∪RN )∗(w), where S∗ denotes

the reflexive transitive closure of a binary relation S.

If F = F↑w, then F is said to be rooted at w.

The following is well known:

Lemma 2.6. Let F be a Kripke frame with a set W of points. Then,

L(F ) =
⋂

w∈W

L(F↑w).

Definition 2.7. A 1-frame (W,R) is n-transitive if Rn+1 ⊆
⋃

m⩽n

Rm. An

N -frame (W,R1, . . . , RN ) is n-transitive if the 1-frame (W,R1 ∪ . . . ∪ RN )

n-transitive.

Let F = (W,R1∪ . . .∪RN ) be an N -frame and R = R1∪ . . .∪RN . Note that

the points from R∗(w) are path-accessible from w. If F is n-transitive, then all

these points are accessible from w in at most n steps, i.e.,

R∗(w) =
⋃

m⩽n

Rm(w).

Definition 2.8. A p-morphism from an N -frame (W,R1, . . . , RN ) onto an N -frame

(W ′, R′
1, . . . , R

′
N ) is a surjective map f : W −→ W ′ satisfying the following con-

ditions:

� xRiy ⇒ f(x)R′
if(y) (lift property),

� f(x)R′
iz ⇒ ∃y (f(y) = z&xRiy) (monotonicity).
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u ̸|= p v |= p

R1
R1

Figure 1. Frame F0 (with universal R2) and model M0

We consider the following 1-modal formulas and logics (here, n ⩾ 1):

det := 3p ↔ □p; ref := □p → p;

sym := 3□p → p; 4 := □p → □□p;

5 := 3□p → □p; altn = ¬
∧

0⩽i⩽n

3(pi ∧
∧
j ̸=i

¬pj);

Ath := 33p → □3p.

T := K+ ref ; K4 := K+ 4 ;

□ ·T := K+□ref ; SL4 := K4+ det ;

K5 := K+ 5 ; K45 := K4+ 5 ;

S5 := K4+ ref + sym; Altn := K+ altn;

K05 := K+Ath.

We briefly mention the Kripke semantics of the lesser known of these logics.

The logic□·T is determined by the class of frames satisfying ∀x∀y(xRy → yRy).

The logic SL4 is determined by the class of transitive and functional frames,

and hence by a single frame where an irreflexive point sees a reflexive point (see

Fig. 1). The logic Altn is determined by the frames (W,R) where |R(w)| ⩽ n

whenever w ∈ W .

Definition 2.9. A 1-frame (W,R) is thick if R−1 ◦R2 ⊆ R or, equivalently,

∀x, y, z, u (xRy&xRz& yRu ⇒ zRu).

Lemma 2.10. The class V(Ath)(= V(K05)) is the class of thick 1-frames.

The logic K05 is Kripke complete; hence, it is determined by the class of thick

1-frames.

2.2 Products and semiproducts

Definition 2.11. The product of 1-frames F1 = (W1, R1) and F2 = (W2, R2)

is the 2-frame F1 × F2 = (W1 ×W2, Rh, Rv), where

(x, y)Rh(x
′, y′) ⇐⇒ xR1x

′ & y = y′;

(x, y)Rv(x
′, y′) ⇐⇒ x = x′ & yR2y

′.

A semiproduct of F1 and F2 is a restriction of F1 × F2 to some W ⊆ W1 ×W2

such that Rh(W ) ⊆ W (i.e., W is horizontally closed).
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Lemma 2.12. If F is a semiproduct of F1 and F2, and xi is a point of Fi (here,

i = 1, 2), then F↑(x1, x2) is a semiproduct of F1↑x1 and F2↑x2.

If C1 and C2 are classes of 1-frames, then we define

C1 × C2 := {F1 × F2 | F1 ∈ C1 and F2 ∈ C2},
C1 C2 := {F | F is a semiproduct of some frames F1 ∈ C1 and F2 ∈ C2}.

Definition 2.13. The product Λ1×Λ and the semiproduct Λ1⋌Λ2 of 1-modal

propositional logics Λ1 and Λ2 are defined as follows:

Λ1 ×Λ2 := L(V(Λ1)×V(Λ2));

Λ1 ⋌Λ2 := L(V(Λ1)⋌V(Λ2)).

We will make use of the following 2-modal formulas and their frame corre-

spondents:

(chr) 32□1p → □132p R−1
2 ◦R1 ⊆ R1 ◦R−1

2 ;

(lcom) □1□2p → □2□1p R2 ◦R1 ⊆ R1 ◦R2;

(rcom) □2□1p → □1□2p R1 ◦R2 ⊆ R2 ◦R1.

Definition 2.14. We define the semicommutator Λ1 Λ2 and the commutator

[Λ1,Λ2] of 1-modal logics Λ1 and Λ2 as follows:

Λ1 Λ2 := Λ1 ∗Λ2 + chr + lcom;

[Λ1,Λ2] := Λ1 Λ2 + rcom.

Lemma 2.15. Let Λ, Λ1, and Λ2 be 1-modal logics. Then,

(1) Λ1 Λ2 ⊆ [Λ1,Λ2] ⊆ Λ1 ×Λ2.

(2) Λ1 ⋌Λ2 ⊆ Λ1 ×Λ2.

(3) Λ S5 ⊆ Λ⋌ S5.

(4) Λ S5 = Λ ∗ S5+ lcom = Λ ∗ S5+ chr.

Definition 2.16. A semiproduct logic Λ1⋌Λ2 has the semiproduct fmp if it is

determined by a class of finite semiproduct frames. The product fmp is defined

similarly.

Remark 2.17. Obviously, the (semi)product fmp implies the fmp. The con-

verse is not always true.

Definition 2.18. 1-modal logics Λ1 and Λ2 are product-matching if Λ1×Λ2 =

[Λ1,Λ2] and semiproduct-matching if Λ1 ⋌Λ2 = Λ1 Λ2.
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The following is well known:

Theorem 2.19. [3, Theorem 5.9]. If a logic Λ is Kripke complete and Horn

axiomatizable, then Λ and S5 are product-matching.

Theorem 2.20. [3, Theorem 9.10]. If Λ ∈ {K,T,K4,S4}, then Λ and S5

are semiproduct-matching.

Note that, while Theorem 2.19 gives infinitely many examples of product-

matching logics, Theorem 2.20 gives only four examples of semiproduct-matching

logics.

2.3 Monadic modal predicate logics

We refer to monadic fragments of 1-modal predicate logics as monadic modal

predicate logics. These are logics in the language containing a countable set

{x1, x2, x3, . . . } of individual variables, a countable set {P 1
1 , P

1
2 , P

1
3 , . . .} of mo-

nadic predicate letters, a countable set {P 0
1 , P

0
2 , P

0
3 , . . .} of nullary predicate

letters (i.e., proposition letters), and logical symbols ⊥, →, □, and ∀. Formulas

are defined as usual.

A monadic modal predicate logic is a set of monadic modal predicate formu-

las that includes the propositional logic K and the monadic classical predicate

tautologies and is closed under Predicate Substitution, Modus Ponens, Gener-

alisation, and Necessitation. The minimal such logic will be called1 QK. If Λ

is a propositional 1-modal logic, then QΛ := QK+Λ and QΛC := QΛ+Ba,

where Ba := ∀x□P (x) → □∀xP (x) is the Barcan formula.

A predicate Kripke frame over a Kripke frame F = (W,R) is a pair F = (F,D),

where D = (Dw)w∈W , with Dw ̸= ∅ for all w and with Dw ⊆ Dv whenever

wRv.

A valuation on F is a family ξ = (ξw)w∈W of local valuations: ξw(P
1
k ) ⊆ Dw

and ξw(P
0
k ) ∈ {0, 1}. A predicate Kripke model over F is a pair M = (F , ξ),

where ξ is a valuation on F .

The truth relation ⊩ between points w of a predicate Kripke model M and

Dw-sentences (i.e., sentences obtained from formulas by replacing parameters

with elements of Dw) is defined by recursion:

� M,w ⊩ P 0
k if ξw(P

0
k ) = 1;

� M,w ⊩ P 1
k (a) if a ∈ ξw(P

1
k );

1Usually, QK, QΛ, and QΛC denote modal logics in languages with predicates of any

arity, but in this paper we use the same notation for logics in languages with only monadic

and nullary predicate letters.
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� M,w ⊩ ∀xA1(x) if M,w ⊩ A1(a) whenever a ∈ Dw,

and the clauses for ⊥, →, □ are as in the propositional case.

A modal predicate formula A is true in M (in symbols, M |= A) ifM,u ⊩ ∀A
whenever w ∈ W . The formula A is valid on a predicate Kripke frame F (in

symbols, F |= A) if M |= A whenever M is a Kripke model over F . If L is a

predicate modal logic, an L-frame is a predicate frame F validating all formulas

from L; in this case, we write F ⊨ L.

By Soundness theorem [14, Theorem 3.2.29], ML(F ) := {A | F |= A} is

a modal predicate logic (called the logic of F ). The modal predicate logic of

a class C of predicate frames (or the logic determined by C) is logic defined as

follows:

ML(C) :=
⋂

{ML(F ) | F ∈ C};

such logics are said to be Kripke complete. Every predicate logic L has the least

Kripke complete extension, called the Kripke completion, which is the logic L̂

of the class of all L-frames.

3 1-variable predicate modal logics, semiprod-

ucts, and products

Let us recall definitions of some classes of monadic predicate modal formulas:

� 1-parametric formulas contain at most one parameter;

� 1-variable formulas are monadic containing at most one (fixed) variable x;

� pure 1-variable formulas are 1-variable without proposition letters;

� inmonodic formulas [7, 3] every subformula of the form□A is 1-parametric.

Monadic monodic fragments (mm-fragments) of logics QK, QT, QK4, and

QS4 are decidable [7, Theorem 5.1].2 Even though they are syntactically more

restrictive, 1-variable fragments are as expressive as mm-fragments:

Lemma 3.1.

(1) Every mm-formula is QK-equivalent to a Boolean combination of 1-variable

formulas.

2These are probably the largest known decidable fragments of modal predicate logics;

most of 2-variable fragments, even in signatures with a single monadic predicate letter, are

undecidable [8].
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(2) every 1-parametric mm-formula is QK-equivalent to a 1-variable formula.

Moreover, every 1-variable formula A in proposition letters q1, q2, . . . , qn

translates into a pure 1-variable formula

A0 := [∀xQ1(x), . . . ,∀xQn(x)/q1, . . . , qn]A,

where Q1, . . . , Qn are monadic letters not occurring in A. Since, for every modal

predicate logic,

L ⊢ A ⇐⇒ L ⊢ A0,

we may assume that all 1-variable formulas are pure.

Furthermore, there exists a validity-preserving bijection A 7→ A∗ between

pure 1-variable modal predicate formulas and 2-modal propositional formulas:

Pi(x)∗ := pi;

⊥∗ := ⊥;

(A → B)∗ := A∗ → B∗;

(□A)∗ := □1A∗;

(∀xA)∗ := □2A∗.

The 1-variable fragment of a modal predicate logic L is the set

(L−1)∗ := {A ∈ L | A is a pure 1-variable formula}.

The propositional counterpart of (L−1)∗ is the set

L−1 := {A∗ | A ∈ L, A is a pure 1-variable formula}.

Loosely, we sometimes refer to the set L−1 as the 1-variable fragment of L.

Remark 3.2. The notion of Kripke completeness is also applicable to 1-variable

fragments of predicate logics: (L−1)∗ is said to be Kripke complete if there

exists a class C of predicate frames such that (ML(C)− 1)∗ = (L− 1)∗, or

equivalently, ML(C)−1 = L−1. Obviously, Kripke completeness of L implies

Kripke completeness of (L−1)∗.

Lemma 3.3. Let L be a modal predicate logic. Then,

(1) L−1 is a 2-modal propositional logic containing K S5.

(2) If L ⊢ Ba, then [K,S5] ⊆ L−1.

Propositon 3.4. Let Λ be a propositional 1-modal logic. Then,
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(1) Λ S5 ⊆ QΛ−1 ⊆ Q̂Λ−1 = Λ⋌ S5. Hence, if QΛ is Kripke complete,

then

Λ S5 ⊆ QΛ−1 = Λ⋌ S5.

(2) [Λ,S5] ⊆ QΛC−1 ⊆ Q̂ΛC−1 = Λ × S5. Hence, if QΛC is Kripke

complete, then

[Λ,S5] ⊆ QΛC−1 = Λ× S5.

Definition 3.5. A 1-modal propositional logic Λ is called quantifier-friendly if

QΛ−1 = Λ S5 and Barcan-friendly if QΛC−1 = [Λ,S5].

Proposition 3.4(1) implies that there exist four possibilities for semiproducts:

(1S) Λ S5 = QΛ−1 = Λ⋌ S5,

(2S) Λ S5 = QΛ−1 ⊂ Λ⋌ S5,

(3S) Λ S5 ⊂ QΛ−1 = Λ⋌ S5.

(4S) Λ S5 ⊂ QΛ−1 ⊂ Λ⋌ S5.

(1S) means that Λ and S5 are semiproduct-matching. Some logics Λ of this

type are described in Theorem 2.19. Another set of examples is presented in

Section 6.

(2S) means thatΛ and S5 are not semiproduct-matching, butΛ is quantifier-

friendly. Examples are given in Section 4.

Examples for (3S) are the logics Altn, as shown in Section 4. Examples for

(4S) are not known.

Proposition 3.4(2) implies that there exist four possibilities for products:

(1P) [Λ,S5] = QΛC−1 = Λ× S5,

(2P) [Λ,S5] = QΛC−1 ⊂ Λ× S5,

(3P) [Λ,S5] ⊂ QΛC−1 = Λ× S5.

(4P) [Λ,S5] ⊂ QΛC−1 ⊂ Λ× S5.

(1P) means that Λ and S5 are product-matching. Examples are well known,

see Theorem 2.19. Examples for (3P) are logics Altn, as shown in Section 4.

(2P) means that Λ and S5 are not product-matching, but Λ is Barcan-

friendly; examples are unknown. Examples for (4P) are also unknown.
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4 Logics not semiproduct-matching with S5

The following result was first stated, without a proof, in [9]:

Theorem 4.1. Let Λ be a propositional 1-modal logic such that □ · T ⊆ Λ ⊆
SL4. Then,

Λ S5 ⊂ Λ S5+□1□2ref 1 ⊆ Λ⋌ S5,

where ref 1 = □1p → p. Hence, Λ and S5 are not semiproduct-matching.

Proof. Let M0 be the model from Fig. 1; then, M0, u ⊨ 3132¬ref and

F0 ⊨ SL4 S5. Hence, □1□2ref1 /∈ SL4 S5, which proves that the first

inclusion is proper.

In view of Lemma 2.15 (3), to prove the second inclusion, it is enough to

show that □1□2ref 1 ∈ □ ·T⋌S5. This membership follows from the validity of

the formula □1□2ref1 on every semiproduct of a □ ·T-frame with an S5-frame.

■

Theorem 4.1 implies that the analogue of Theorem 2.19 does not hold for

semiproducts (cf. Theorem 2.20); in particular, it gives us the following coun-

terexamples:

Corollary 4.2. Horn axiomatizable logics □·T, K5, and K45 are not semiproduct-

matching with S5.

Moreover, the following nontrivial result is also true (stated in [10]; the proof

is in preparation):

Theorem 4.3. Every Kripke complete Horn axiomatizable logic is quantifier-

friendly.

Corollary 4.4. The logics □ ·T, K5, and K45 satisfy (2S ).

Remark 4.5. A standard modal logic argument shows that there is a contin-

uum of logics between □ · T and SL4. Due to Theorem 4.1, this gives us a

continuum of logics not satisfying (1S).

Remark 4.6. If Λ is a logic from the statement of Theorem 4.1, then QΛ is

Kripke incomplete [11, Theorem 5.11].

We next recall a well-known property of Jankov–Fine formulas XG (this

property is stated in [12] in a slightly different form):
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Proposition 4.7. Let G be a rooted n-transitive N -frame. Then there exists

an N -modal formula XG such that, for every n-transitive frame F , the following

holds: F ̸⊨XG iff there exists a p-morphism from some cone of F onto G.

Theorem 4.8. If Altn ⊆ Λ ⊆ Altn + □2⊥, where n ⩾ 3, then Λ and S5 are

neither semiproduct- nor product-matching.

Proof. We sketch the proof for n = 4; the general case is argued similarly.

Let G = (W,R, S) be the frame depicted in Fig. 2, on the right (S-reflexive

accessibilities are not drawn).

G

Rh

Rv

R

S

f

(0, 1)

(1, 1)

(2, 1)

(3, 1)

(4, 1)

(0, 2)

(1, 2)

(2, 2)

(3, 2)

(4, 2)

H

(x0, y)

(x1, y)

(x2, y)

(x3, y)

(x4, y)

(x0, y′)

(x1, y′)

(x2, y′)

(x3, y′)

(x4, y′)

Figure 2. Frame G is not a p-morphic image of any H ∈ V(Alt4)⋌ U

It is not hard to see that G |= [Alt4 +□2⊥,S5]. Hence, G is 3-transitive.3

Let XG be the Jankov–Fine formula of G, and let A := □2
1⊥ → XG. Surely,

G |= □2
1⊥, and, by Proposition 4.7, G ̸|= XG. Therefore, G ̸|= A, and hence

A /∈ [Altn +□2⊥,S5].

On the other hand, A ∈ Altn⋌S5, since otherwise, by Proposition 4.7, G is

a p-morphic image of a cone F↑(x1, x2), where F is a semiproduct of F1 ⊨ Altn

and F2 ⊨ S5. By Lemma 2.12, this cone is a semiproduct of F↑x1 and F↑x2.

3This fact can also be inferred from Fig. 2.

12



By Lemma 2.6, F↑x1 is an Altn-frame. Since F↑x2 is a cone in an S5-frame,

it is a cluster (a frame with a universal relation).

However, as we next show, G cannot be a p-morphic of a semiproduct of such

frames. Indeed, suppose f is a required p-morphism with f(x0, y) = (0, 1). By

the lift property, there exist points (xi, y), with 1 ⩽ i ⩽ 4, and (x0, y
′) such that

f(xi, y) = (i, 1), for i ∈ {1, . . . , 4}, and f(x0, y
′) = (0, 2) (see Fig. 2). Then, by

monotonicity, f(x0, y
′)Rf(x2, y

′) and f(x2, y)S(x2, y
′); hence, f(x2, y

′) = (1, 2).

Similarly, f(x3, y
′) = (1, 2) and f(x4, y

′) = (4, 2). Hence, (x1, y
′) is mapped to

either (2, 2) or (3, 2), which means that one of these points is not in the range

of f , in contradiction with f being a p-morphism. ■

Recall that a modal predicate logic L is strongly Kripke complete if every

L-consistent theory is satisfiable at a point of a model over an L-frame. By

using selective submodels of canonical models (the method described in [11]),

we can obtain the following result (for details, see [13]):

Theorem 4.9. Every logic QAltn is strongly Kripke complete.

Since adding closed propositional formulas preserves strong Kripke complete-

ness, the following is also true:

Corollary 4.10. Every logic QAltn + □m⊥, with m ⩾ 2, is strongly Kripke

complete.

The correspondent of the propositional formula altn is a classical first-order

universal sentence. Hence, by Tanaka–Ono theorem [14, Theorem 7.4.7], we

obtain the following:

Theorem 4.11. If

Λ ∈ {Altn | n ⩾ 1} ∪ {Altn +□m⊥ | n ⩾ 1,m ⩾ 2},

then the logic QΛC is strongly Kripke complete.

This implies the following:

Theorem 4.12. If Λ = Altn or Λ = Altn + □m⊥, with n ⩾ 3 and m ⩾ 2,

then the logic Λ S5 satisfies (3S ) and the logic Λ× S5 satisfies (3P).

Proof. By Theorem 4.8, Λ ⋌ S5 ̸= Λ S5 and [Λ,S5] ̸= Λ × S5. By

Theorem 4.9, Corollary 4.10, and Proposition 3.4(1), QΛ− 1 = Λ⋌S5. Hence,

Λ1 S5 ̸= QΛ−1. Similarly, it follows, by Theorem 4.11 and Proposition 3.4(2),

that QΛC− 1 = Λ× S5. Hence, QΛC− 1 ̸= [Λ,S5]. ■

Problem 4.13. Suppose that Λ is a logic from Theorem 4.11. Axiomatize log-

ics QΛ− 1 (= Λ⋌ S5) and QΛC− 1 (= Λ× S5).
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5 Local tabularity and modal depth

We now recall definitions and facts from [15] aboutN -modal formulas and logics.

Definition 5.1. The modal depth md(A) of an N -modal propositional formula

A is the maximal number of nested occurrences of modal operators in A:

md(⊥) := 0;

md(pj) := 0;

md(A → B) := max(md(A),md(B));

md(□iA) := md(A) + 1.

Definition 5.2. The modal depth mdΛ(A) of a formula A in an N -modal logic

Λ is defined as follows:

mdΛ(A) := min{md(B) | Λ ⊢ A ↔ B}.

The modal depth md(Λ) of a logic Λ is defined as follows:

md(Λ) :=

max{mdΛ(B) | B is an N -modal propositional formula} if exists;

∞ otherwise.

Definition 5.3. An N -modal logic Λ is locally tabular if, for any finite k, there

exist only finitely many N -modal k-formulas non-equivalent in Λ.

Propositon 5.4.

(1) Every locally tabular logic has the fmp.

(2) Every propositional modal logic of finite modal depth is locally tabular.

6 Logics semiproduct-matching with S5

In this section, we show that each logic K05 + □n⊥ is semiproduct-matching

with S5 and that the corresponding semiproduct has the semiproduct fmp. We

use the following nomenclature for logics:

Λ0n := K05+□n⊥;

Λn := Λ0n S5;

Λ′
n := Λn + rcom = [Λ0n,S5].

Theorem 6.1. If n ⩾ 1, then md(Λn) ⩽ 2n− 1.

The proof uses bisimulation games; for more details, see [15, 16]. Thus, by

Proposition 5.4, we obtain the following:

14



Corollary 6.2. The logics Λn and Λ′
n have the fmp.

To prove semiproduct-matching and the semiproduct fmp for Λn, it suffices

to construct p-morphisms from semiproducts of finite Λ0n-frames with clusters

onto finite Λn-cones. Similarly, to prove product-matching and the product fmp

for Λ′
n, it suffices to construct p-morphisms from products of finite Λ0n-frames

with clusters onto finite Λ′
n-cones. We construct the sought p-morphisms in a

number of steps (Lemmas 6.6 – 6.10).

Definition 6.3. Let F = (W,R1, . . . , RN ) and F ′ = (W ′, R′
1, . . . , R

′
N ) be frames.

A map g : W −→ W ′ is a strong homomorphism from F to F ′ if, for every

w, v ∈ W and every i,

wRiv ⇐⇒ g(w)R′
ig(v).

Lemma 6.4. Every surjective strong homomorphism is a p-morphism and an

elementary equivalence for formulas without equality.

Thus, if Λ is elementary (with respect to a classical signature without equal-

ity), then the class V(Λ) is closed under strong homomorphic pre-images.

Definition 6.5. Let F = (W,R1, R2) be a K S5-frame.

� A row in F is an equivalence class under the relation (R1 ∪R−1
1 )∗.

� A column in F is an equivalence class under R2.

� A block in F is a non-empty intersection of a row and a column.

� F is organized if, for every row U in F , the frame (W,R1) ↾ U is rooted.

� F is equalized if every column in F consists of blocks of the same cardi-

nality.

� F is straight if all its blocks are singletons.

Lemma 6.6 (on organizing). Every finite rooted Λn-frame is a strong ho-

momorphic image of a finite rooted organized Λn-frame; a similar fact holds for

Λ′
n-frames.

Proof. Let F = (W,R1, R2) be a finite rooted Λn-frame. We say that a point

a ∈ W is R1-minimal if R−1
1 (a) = ∅. We put

V := {(a, x) | a is R1-minimal and aR∗
1x}
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and define relations Si on V :

(a, x)S1(b, y) ⇐⇒ a = b & xR1y,

(a, x)S2(b, y) ⇐⇒ xR2y.

Then (V, S1, S2) is rooted and organized, and the map (a, x) 7→ x is a required

strong homomorphism onto F . ■

Lemma 6.7 (on equalizing). Every finite rooted organized Λn-frame is a

strong homomorphic image of a finite rooted equalized Λn-frame; a similar fact

holds for Λ′
n-frames.

Proof. To equalize a frame F = (W,R1, R2), we add extra points to blocks

making the blocks of a column the same size. We use the fact that, for every

pair of blocks β and γ in F and each k ∈ {1, 2},

(1) ∃x ∈ β ∃y ∈ γ xRky ⇐⇒ ∀x ∈ β ∀y ∈ γ xRky.

Hence, we write βRkγ whenever there exist x ∈ β and y ∈ γ such that xRky.

We replace each block β in F with a block β′ whose cardinality is the largest for

blocks in the column of β. We put W ′ := {β′ | β is a block in F} and define,

for every x ∈ β′, y ∈ γ′, and k ∈ {1, 2},

xR′
ky ⇐⇒ βRkγ.

Due to (1), each relation R′
k is well defined. Then the frame F ′ := (W ′, R′

1, R
′
2)

is equalized. A surjective map sending each point of block β′ in F ′ to some

point of block β in F is a strong homomorphism. ■

Lemma 6.8 (on straightening). Every finite rooted equalized Λn-frame is a

strong homomorphic image of a finite rooted straight Λn-frame; a similar fact

holds for Λ′
n-frames.

Proof. To straighten a frame F = (W,R1, R2), we first construct a frame

whose columns all have the size, say n, of the largest column in F . To that end,

we put W ′ = W × n and define R′
1 ⊆ W ′ ×W ′ so that

(x, i)R′
1(y, j) ⇐⇒ xR1y & i = j,

and R′
2 ⊆ W ′ ×W ′ so that, if β and γ are blocks from the same column of F ,

x ∈ β, and y ∈ γ, then, for fixed enumerations Nβ of β and Nγ of γ,

(x, i)R′
2(y, j) ⇐⇒ Nβ(x) + i ≡ Nγ(y) + j (mod |β|).

Then the map (x, i) 7→ x is a strong homomorphism from F ′ = (W ′, R′
1, R

′
2)

onto F . ■

16



From Lemmas 6.6–6.8 and 6.4 we immediately obtain the following:

Lemma 6.9. Every finite rooted Λn-frame is a p-morphic image of a finite

rooted straight Λn-frame; a similar fact holds for Λ′
n-frames.

Lemma 6.10. Every finite rooted straight Λn-frame is isomorphic to a semiprod-

uct of an Λ0n-frame and a cluster; a similar fact holds for Λ′
n-frames and prod-

ucts.

Proof. If F = (W,R1, R2) is a finite straight frame rooted at x0, then F

is isomorphic to a (semi)product of the frame (R∗
1(x0), R1 ↾ R∗

1(x0)) and the

cluster whose points are the rows of F . ■

Theorem 6.11.

(1) The logics K05+□n⊥ and S5 are both semiproduct-matching and product-

matching.

(2) The logics (K05 + □n⊥) ⋌ S5 have the semiproduct fmp, and the logics

(K05+□n⊥)× S5 have the product fmp.

Proof. Let, as before, Λ0n := K05 + □n⊥, Λn := Λ0n S5, and Λn :=

[Λ0n,S5].

(1) Suppose A /∈ Λn. By Corollary 6.2, Λn has the fmp. Hence, A is

refuted on a finite rooted Λn-frame. By Lemmas 6.9 and 6.10, this frame is

a p-morphic image of a semiproduct of a finite Λ0n-frame and a finite cluster.

Since p-morphisms preserve validity of modal formulas, A /∈ Λ0n ⋌ S5. Thus,

Λ0n ⋌ S5 ⊆ Λn. The converse is given by Lemma 2.15(3).

The proof for Λ′
n is similar.

(2) Since the (semi)product frames obtained in the proof of (1) are finite,

the claim follows. ■
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